首页     开始     新图片     每日图片     Blog New!     登录  

30 Cet


目录

图像

上传图像

DSS Images   Other Images


相关文章

Rotation- and temperature-dependence of stellar latitudinal differential rotation
More than 600 high resolution spectra of stars with spectral type F andlater were obtained in order to search for signatures of differentialrotation in line profiles. In 147 stars the rotation law could bemeasured, with 28 of them found to be differentially rotating.Comparison to rotation laws in stars of spectral type A reveals thatdifferential rotation sets in at the convection boundary in theHR-diagram; no star that is significantly hotter than the convectionboundary exhibits the signatures of differential rotation. Four lateA-/early F-type stars close to the convection boundary and at v sin{i}≈ 100 km s-1 show extraordinarily strong absolute shear atshort rotation periods around one day. It is suggested that this is dueto their small convection zone depth and that it is connected to anarrow range in surface velocity; the four stars are very similar inTeff and v sin{i}. Detection frequencies of differentialrotation α = ΔΩ/Ω > 0 were analyzed in starswith varying temperature and rotation velocity. Measurable differentialrotation is more frequent in late-type stars and slow rotators. Thestrength of absolute shear, ΔΩ, and differential rotationα are examined as functions of the stellar effective temperatureand rotation period. The highest values of ΔΩ are found atrotation periods between two and three days. In slower rotators, thestrongest absolute shear at a given rotation rateΔΩmax is given approximately byΔΩmax ∝ P-1, i.e.,αmax ≈ const. In faster rotators, bothαmax and ΔΩmax diminish lessrapidly. A comparison with differential rotation measurements in starsof later spectral type shows that F-stars exhibit stronger shear thancooler stars do and the upper boundary in absolute shear ΔΩwith temperature is consistent with the temperature-scaling law found inDoppler Imaging measurements.

Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs
We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

HIPPARCOS age-metallicity relation of the solar neighbourhood disc stars
We derive age-metallicity relations (AMRs) and orbital parameters forthe 1658 solar neighbourhood stars to which accurate distances aremeasured by the HIPPARCOS satellite. The sample stars comprise 1382 thindisc stars, 229 thick disc stars, and 47 halo stars according to theirorbital parameters. We find a considerable scatter for thin disc AMRalong the one-zone Galactic chemical evolution (GCE) model. Orbits andmetallicities of thin disc stars show now clear relation each other. Thescatter along the AMR exists even if the stars with the same orbits areselected. We examine simple extension of one-zone GCE models whichaccount for inhomogeneity in the effective yield and inhomogeneous starformation rate in the Galaxy. Both extensions of the one-zone GCE modelcannot account for the scatter in age - [Fe/H] - [Ca/Fe] relationsimultaneously. We conclude, therefore, that the scatter along the thindisc AMR is an essential feature in the formation and evolution of theGalaxy. The AMR for thick disc stars shows that the star formationterminated 8 Gyr ago in the thick disc. As already reported by Grattonet al. (\cite{Gratton_et.al.2000}) and Prochaska et al.(\cite{Prochaska_et.al.2000}), thick disc stars are more Ca-rich thanthin disc stars with the same [Fe/H]. We find that thick disc stars showa vertical abundance gradient. These three facts, the AMR, verticalgradient, and [Ca/Fe]-[Fe/H] relation, support monolithic collapseand/or accretion of satellite dwarf galaxies as likely thick discformation scenarios. Tables 2 and 3 are only available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)or via http:/ /cdsweb.u-strasbg.fr/ cgi-bin/qcat?J/ A+A/394/927

A catalog of rotational and radial velocities for evolved stars
Rotational and radial velocities have been measured for about 2000evolved stars of luminosity classes IV, III, II and Ib covering thespectral region F, G and K. The survey was carried out with the CORAVELspectrometer. The precision for the radial velocities is better than0.30 km s-1, whereas for the rotational velocity measurementsthe uncertainties are typically 1.0 km s-1 for subgiants andgiants and 2.0 km s-1 for class II giants and Ib supergiants.These data will add constraints to studies of the rotational behaviourof evolved stars as well as solid informations concerning the presenceof external rotational brakes, tidal interactions in evolved binarysystems and on the link between rotation, chemical abundance and stellaractivity. In this paper we present the rotational velocity v sin i andthe mean radial velocity for the stars of luminosity classes IV, III andII. Based on observations collected at the Haute--Provence Observatory,Saint--Michel, France and at the European Southern Observatory, LaSilla, Chile. Table \ref{tab5} also available in electronic form at CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

The ROSAT all-sky survey catalogue of optically bright main-sequence stars and subgiant stars
We present X-ray data for all main-sequence and subgiant stars ofspectral types A, F, G, and K and luminosity classes IV and V listed inthe Bright Star Catalogue that have been detected as X-ray sources inthe ROSAT all-sky survey; several stars without luminosity class arealso included. The catalogue contains 980 entries yielding an averagedetection rate of 32 percent. In addition to count rates, sourcedetection parameters, hardness ratios, and X-ray fluxes we also listX-ray luminosities derived from Hipparcos parallaxes. The catalogue isalso available in electronic form via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Are metallic A-F giants evolved AM stars? Rotation and rate of binaries among giant F stars
We test the hypothesis of Berthet (1992) {be91} which foresees that Amstars become giant metallic A and F stars (defined by an enhanced valueof the blanketing parameter Delta m_2 of the Geneva photometry) whenthey evolve. If this hypothesis is right, Am and metallic A-FIII starsneed to have the same rate of binaries and a similar distribution ofvsin i. From our new spectroscopic data and from vsin i and radialvelocities in the literature, we show that it is not the case. Themetallic giant stars are often fast rotators with vsin i larger than 100kms(-1) , while the maximum rotational velocity for Am stars is about100 kms(-1) . The rate of tight binaries with periods less than 1000days is less than 30% among metallic giants, which is incompatible withthe value of 75% for Am stars - [Abt & Levy 1985] {ab85}).Therefore, the simplest way to explain the existence of giant metallic Fstars is to suggest that all normal A and early F stars might go througha short ``metallic" phase when they are finishing their life on the mainsequence. Besides, it is shown that only giant stars with spectral typecomprised between F0 and F6 may have a really enhanced Delta m_2 value,while all A-type giants seem to be normal. Based on observationscollected at Observatoire de Haute Provence (OHP), France.

Near-Infrared Imaging and Spectroscopy of the Bright IRAS Galaxy VV 114
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995ApJ...450..111D&db_key=AST

Ca II H and K Filter Photometry on the UVBY System. II. The Catalog of Observations
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995AJ....109.2828T&db_key=AST

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

Optical Polarization of 1000 Stars Within 50-PARSECS from the Sun
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1993A&AS..101..551L&db_key=AST

Early type high-velocity stars in the solar neighborhood. IV - Four-color and H-beta photometry
Results are presented from photometric obaservations in the Stromgrenuvby four-color and H-beta systems of early-type high-velocity stars inthe solar neighborhood. Several types of photometrically peculiar starsare selected on the basis of their Stromgren indices and areprovisionally identified as peculiar A stars, field horizontal-branchstars, metal-poor stars near the Population II and old-disk turnoffs,metal-poor blue stragglers, or metallic-line A stars. Numerousphotometrically normal stars were also found.

The extension of the MK spectral classification system to the intermediate population II F type stars
A grid of metal-weak spectral-classification standards is used tosystematically extend the MK spectral-classification system to F-typestars of the intermediate population II. The present method allowsmetal-weak program stars to be compared with standards of similarmetallicity and effective temperature. The results demonstrate that theintermediate population II is very homogeneous. Excellent agreement isobtained between the classifications of the present extended system anduvby-beta photometric results.

Metallicism among A and F giant stars
132 stars considered as A and F giants have been studied for theirproperties in the Geneva photometric system. It is shown that thissystem to derive the temperature, absolute magnitude and Fe/H value forstars in this part of the HR diagram. 36 percent of the stars of oursample exhibit an enhanced value Delta m2 that can be interpreted interms of Fe/H. The red limit of stars having an enhanced Fe/H value is0.225 in B2-V1 or 6500 K in Teff. This corresponds to the limit definedby Vauclair and Vauclair (1982) where the diffusion timescale is equalto the stellar lifetime and permits the assumption that the diffusion isthe process responsible for the metallicism observed in the A and Fgiants.

Principal components analysis of spectral data. I - Methodology for spectral classification
Principal components analysis is applied to published narrow-bandphotometric data on 53 standard stars of spectral types A and F.Correlations within the data are displayed and the propagation of errorsis discussed. Techniques for improving the precision and the efficiencyof the classification are explored, including non-linear regression andtrimming and grouping of the original data. As an example, a set of 47observed variables is reduced to 3, with no loss of precision.

UVBY BET photometry of equatorial and southern bright stars.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1977A&AS...27...47H&db_key=AST

Spectral classification of the bright F stars.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1976PASP...88...95C&db_key=AST

Study of the F-type 1 MK spectral types.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1975AJ.....80..637M&db_key=AST

6-color photometry of 13 F-G supergiants in the Large Magellanic Cloud.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1971A&A....15..320B&db_key=AST

Variability of A and F main sequence stars.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1971A&A....12..223J&db_key=AST

Catalog of Indidual Radial Velocities, 0h-12h, Measured by Astronomers of the Mount Wilson Observatory
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1970ApJS...19..387A&db_key=AST

Polarimetric Observations of Nearby Stars in the Directions of the Galactic Poles and the Galactic Plane
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1968ApJ...151..907A&db_key=AST

MK Spectral Types for 185 Bright Stars
Not Available

提交文章


相关链接

  • - 没有找到链接 -
提交链接


下列团体成员


观测天体数据

星座:鯨魚座
右阿森松:01h07m46.20s
赤纬:-09°47'08.0"
视星:5.82
距离:47.687 天文距离
右阿森松适当运动:149.4
赤纬适当运动:16.8
B-T magnitude:6.223
V-T magnitude:5.756

目录:
适当名称
Flamsteed30 Cet
HD 1989HD 6706
TYCHO-2 2000TYC 5273-2655-1
USNO-A2.0USNO-A2 0750-00270791
BSC 1991HR 329
HIPHIP 5296

→ 要求更多目录从vizier