Home     Baþlangýç     Yeni Görüntü     Gönün Görüntüsü     Blog New!     Giriþ  

HD 16160


Ýçindekiler

Görüntüler

Resim Yükleyin

DSS Images   Other Images


Ýlgili Makaleler

MK Classification and Dynamical Masses for Late-Type Visual Binaries
On the basis of slit spectra obtained with the SCORPIO spectral cameraattached to the 2.6 m telescope of the V. Ambartsumian ByurakanAstrophysical Observatory (Armenia), MK classifications for 30 visualbinaries comprising mostly late K and M type stars are presented.Comparison with other determinations shows that this configurationprovides a reliable MK classification. Dynamical masses for 25 systemsare computed. Using standard mass-luminosity calibrations, individualmass sums for 11 pairs consisting of virtually single, nonvariabledwarfs are calculated, showing a good agreement with correspondingdynamical masses. The dynamical parallax of HIP 112354 is closer to thetrigonometric parallax given in the Yale General Catalogue ofTrigonometric Stellar Parallaxes (van Altena et al.) than to theHipparcos parallax.

Anharmonic and standing dynamo waves: theory and observation of stellar magnetic activity
The familiar decadal cycle of solar activity is one expression ofinterannual variability of surface magnetism observed in stars on ornear the lower main sequence. From studies of time-series of CaII H andK emission fluxes that go back more than 35 yr and have been accumulatedfor such stars at the Mount Wilson Observatory by the HK Project, wedefine a quantitative measure, called anharmonicity, of the cycliccomponent of interannual magnetic variability. Anharmonicity provides aconnection between observed variations in magnetic activity and thetwo-dimensional description of a Parker dynamo model. We explore theparameter space of the Parker dynamo model and find an excellentcounterpart in the records of several of the lowest-mass (late K-type toearly M-type) active stars in the HK Project sample to the solutionscontaining highly anharmonic, standing dynamo waves. We interpretanharmonicity apparent in the records as resulting from non-propagatingor standing dynamo waves, which operate in a regime that issubstantially supercriticial. There, for the majority of a cycle, orpulse of decadal-to-interdecadal variability, the large-scale magneticfields are generated and maintained by winding of field by differentialrotation rather than by the joint action of differential rotation andhelical convection. Among the less active stars (the Sun is consideredsuch a star in the HK Project sample) we find a correspondence betweenanharmonicity and Parker dynamo model solutions that include simpleharmonic, migratory and/or intermediate-type dynamo wave patterns over abroad range of dynamo parameters.

Frequency of Debris Disks around Solar-Type Stars: First Results from a Spitzer MIPS Survey
We have searched for infrared excesses around a well-defined sample of69 FGK main-sequence field stars. These stars were selected withoutregard to their age, metallicity, or any previous detection of IRexcess; they have a median age of ~4 Gyr. We have detected 70 μmexcesses around seven stars at the 3 σ confidence level. Thisextra emission is produced by cool material (<100 K) located beyond10 AU, well outside the ``habitable zones'' of these systems andconsistent with the presence of Kuiper Belt analogs with ~100 times moreemitting surface area than in our own planetary system. Only one star,HD 69830, shows excess emission at 24 μm, corresponding to dust withtemperatures >~300 K located inside of 1 AU. While debris disks withLdust/L*>=10-3 are rare around oldFGK stars, we find that the disk frequency increases from 2%+/-2% forLdust/L*>=10-4 to 12%+/-5% forLdust/L*>=10-5. This trend in thedisk luminosity distribution is consistent with the estimated dust inour solar system being within an order of magnitude greater or less thanthe typical level around similar nearby stars. Although there is nocorrelation of IR excess with metallicity or spectral type, there is aweak correlation with stellar age, with stars younger than a gigayearmore likely to have excess emission.

Dwarfs in the Local Region
We present lithium, carbon, and oxygen abundance data for a sample ofnearby dwarfs-a total of 216 stars-including samples within 15 pc of theSun, as well as a sample of local close giant planet (CGP) hosts (55stars) and comparison stars. The spectroscopic data for this work have aresolution of R~60,000, a signal-to-noise ratio >150, and spectralcoverage from 475 to 685 nm. We have redetermined parameters and derivedadditional abundances (Z>10) for the CGP host and comparison samples.From our abundances for elements with Z>6 we determine the meanabundance of all elements in the CGP hosts to range from 0.1 to 0.2 dexhigher than nonhosts. However, when relative abundances ([x/Fe]) areconsidered we detect no differences in the samples. We find nodifference in the lithium contents of the hosts versus the nonhosts. Theplanet hosts appear to be the metal-rich extension of local regionabundances, and overall trends in the abundances are dominated byGalactic chemical evolution. A consideration of the kinematics of thesample shows that the planet hosts are spread through velocity space;they are not exclusively stars of the thin disk.

The highly spotted photosphere of the young rapid rotator Speedy Mic
We present high-resolution images of the young rapidly rotating K3 dwarfSpeedy Mic (BO Mic, HD 197890). The photospheric spot maps reveal aheavily and uniformly spotted surface from equatorial to high-latituderegions. Contrary to many images of similar objects, Speedy Mic does notpossess a uniform filling at high latitudes, but exhibits structure inthe polar regions showing greatest concentration in a particularlongitude range. The asymmetric rotation profile of Speedy Mic indicatesthe presence of a companion or nearby star which shows radial velocityshifts over a time-scale of several years. Using a simple dynamicalargument, we show that Speedy Mic is unlikely to be a binary system, andconclude that the feature must be the result of a chance alignment witha background binary. Complete phase coverage on two consecutive nightsin addition to 60 per cent phase coverage after a three-night gap hasenabled us to track the evolution of spots with time. By incorporating asolar-like differential rotation model into the image reconstructionprocess, we find that the equator laps the polar regions once every 191+/- 17 d. This finding is in close agreement with measurements for otherlate-type rapid rotators.

Predicting accurate stellar angular diameters by the near-infrared surface brightness technique
I report on the capabilities of the near-infrared (near-IR) surfacebrightness technique to predict reliable stellar angular diameters asaccurate as <~2 per cent using standard broad-band Johnson photometryin the colour range -0.1 <= (V-K)O<= 3.7 includingstars of A, F, G, K spectral type. This empirical approach is fast toapply and leads to estimated photometric diameters in very goodagreement with recent high-precision interferometric diametermeasurements available for non-variable dwarfs and giants, as well asfor Cepheid variables. Then I compare semi-empirical diameters predictedby model-dependent photometric and spectrophotometric (SP) methods withnear-IR surface brightness diameters adopted as empirical referencecalibrators. The overall agreement between all these methods is withinapproximately +/-5 per cent, confirming previous works. However, on thesame scale of accuracy, there is also evidence for systematic shiftspresumably as a result of an incorrect representation of the stellareffective temperature in the model-dependent results. I also comparemeasurements of spectroscopic radii with near-IR surface brightnessradii of Cepheids with known distances. Spectroscopic radii are found tobe affected by a scatter as significant as >~9 per cent, which is atleast three times greater than the formal error currently claimed by thespectroscopic technique. In contrast, pulsation radii predicted by theperiod-radius (PR) relation according to the Cepheid period result aresignificantly less dispersed, indicating a quite small scatter as aresult of the finite width of the Cepheid instability strip, as expectedfrom pulsation theory. The resulting low level of noise stronglyconfirms our previous claims that the pulsation parallaxes are the mostaccurate empirical distances presently available for Galactic andextragalactic Cepheids.

Visual Star Colours from Instrumental Photometry
In order to display graphically the visual colours of stars and otherastronomical objects, photometric broadband R, V, B colours are used toproxy for the r, g, b colours of the three visual sensors of the eye.From photometric Johnson B-V and V-R colour indices, R, V, and Bmagnitudes (V = 0) are calculated, and from these the respectivebrightnesses (r, v = 1 = g, and b) are calculated. After suitablenormalization these are then placed in a ternary diagram having r, g,and b as the vertices. All B-V and V-R are adjusted so that the Sunfalls in the same place as a blackbody at 5800 K. The resulting ternaryplot shows all of its objects (stars, planets) in their visual coloursat their relative positions in the ternary diagram. The star coloursdisplayed on a computer monitor screen or as a print with a colourprinter are more vivid than the usual visual impressions of isolatedstars, undoubtedly because of properties of the dark-adapted eye, butdouble-star pairs with contrasting colours correspond nicely totelescopic visual impressions.

Plage and flare Activity of the RS CVn-type Star UX Arietis during 2001-2002
The very active RS CVn-type star UX Ari was observed usinghigh-resolution echelle spectrograph attached to the 2.16m telescope ofXinglong station in Nov.-Dec. 2001 and Dec. 2002. By means of syntheticspectral subtraction method, the information about chromosphericactivity of the system was obtained through several chromosphericactivity indicators HeI D3, NaI D1D2,Hα, and CaII IRT lines. Based on the analysis for theseactivity indicators, we found that the chromospheric activity of UX Arishowed obvious orbital modulation phenomenon, and the favorite activelongitudes were around the quadratures of the binary system. During thetwo observing runs, hot plage and very strong optical flare events weredetected, which were always happened around the favorite activelongitudes of the system. Moreover, they were linked with thephotospheric starspots in spatial structure, and appeared just above themain starspots.

Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs
We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.

Predicting the Length of Magnetic Cycles in Late-Type Stars
In this paper we present a modification of a local approximation of theso-called interface dynamo in an attempt to reproduce the length of themagnetic cycles for a sample of late-type stars. The sample consists of25 stars, observed during the Mount Wilson and Las Campanas long-termmonitoring campaigns, for which well-defined cycles have been detected.We have focused our efforts on reproducing general trends observed,namely, the dependence of the cycle length, Pcyc, on thestellar rotation period, Prot, rather than attempting toinfer from the dynamo model individual cycle lengths for each star. Inspite of the simplicity of the model, the results are promising. Thetrend of increasing cycle length with increasing rotation period isreproduced with a minimum of assumptions.

Observational Constraints on Cool Disk Material in Quiescent Black Hole Binaries
We consider current observational constraints on the presence of cool,optically thick disk material in quiescent black hole binaries,specifically focusing on a case study of the prototypical systemA0620-00. Such material might be expected to be present theoreticallybut is usually claimed to make a negligible contribution at optical andIR wavelengths. The primary argument is based on measurements of theveiling of stellar photospheric absorption lines, in which it is assumedthat the disk spectrum is featureless. We use simulated spectra toexplore the sensitivity of veiling measurements to uncertainties incompanion temperature, gravity, and metallicity. We find that thederived veiling is extremely sensitive to a mismatch between thetemperature and metallicity of the companion and template but that theeffect of a plausible gravity mismatch is much smaller. In general, theresulting uncertainty in the amount of veiling is likely to be muchlarger than the usually quoted statistical uncertainty. We also simulatespectra in which the disk has an emergent spectrum similar to the starand find that in this case, optical veiling constraints are moderatelyrobust. This is because the rotational broadening of the disk is solarge that the two line profiles effectively decouple, and themeasurement of the depth of stellar lines is largely unbiased by thedisk component. We note, however, that this is only true at intermediateresolutions or higher and that significant bias might still affectlow-resolution IR observations. Assuming that the optical veiling isreliable, we then examine the constraints on the temperature andcovering factor of any optically thick disk component. These arestringent if the disk is warm (Teff>~3500 K), but verytemperature sensitive, and cooler disks are largely unconstrained byoptical measurements. Current IR veiling estimates do not help much,representing rather high upper limits. Probably the best constraintcomes from the relative amplitudes of ellipsoidal variations indifferent bands, as these are sensitive to differences in veiling thatare expected for disks cooler than the companion star. A significantdisk contribution in the IR, up to ~25%, is not ruled out in this or anyother way considered, however.

The Effective Temperature Scale of FGK Stars. II. Teff:Color:[Fe/H] Calibrations
We present up-to-date metallicity-dependent temperature versus colorcalibrations for main-sequence and giant stars based on temperaturesderived with the infrared flux method (IRFM). Seventeen colors in thephotometric systems UBV, uvby, Vilnius, Geneva, RI(Cousins), DDO,Hipparcos-Tycho, and Two Micron All Sky Survey (2MASS) have beencalibrated. The spectral types covered by the calibrations range from F0to K5 (7000K>~Teff>~4000K) with some relationsextending below 4000 K or up to 8000 K. Most of the calibrations arevalid in the metallicity range -3.5>~[Fe/H]>~0.4, although some ofthem extend to as low as [Fe/H]~-4.0. All fits to the data have beenperformed with more than 100 stars; standard deviations range from 30 to120 K. Fits were carefully performed and corrected to eliminate thesmall systematic errors introduced by the calibration formulae. Tablesof colors as a function of Teff and [Fe/H] are provided. Thiswork is largely based on the study by A. Alonso and collaborators; thus,our relations do not significantly differ from theirs except for thevery metal-poor hot stars. From the calibrations, the temperatures of 44dwarf and giant stars with direct temperatures available are obtained.The comparison with direct temperatures confirms our finding in Paper Ithat the zero point of the IRFM temperature scale is in agreement, tothe 10 K level, with the absolute temperature scale (that based onstellar angular diameters) within the ranges of atmospheric parameterscovered by those 44 stars. The colors of the Sun are derived from thepresent IRFM Teff scale and they compare well with those offive solar analogs. It is shown that if the IRFM Teff scaleaccurately reproduces the temperatures of very metal-poor stars,systematic errors of the order of 200 K, introduced by the assumption of(V-K) being completely metallicity independent when studying verymetal-poor dwarf stars, are no longer acceptable. Comparisons with otherTeff scales, both empirical and theoretical, are also shownto be in reasonable agreement with our results, although it seems thatboth Kurucz and MARCS synthetic colors fail to predict the detailedmetallicity dependence, given that for [Fe/H]=-2.0, differences as highas approximately +/-200 K are found.

The Effective Temperature Scale of FGK Stars. I. Determination of Temperatures and Angular Diameters with the Infrared Flux Method
The infrared flux method (IRFM) has been applied to a sample of 135dwarf and 36 giant stars covering the following regions of theatmospheric parameter space: (1) the metal-rich ([Fe/H]>~0) end(consisting mostly of planet-hosting stars), (2) the cool(Teff<~5000 K) metal-poor (-1<~[Fe/H]<~-3) dwarfregion, and (3) the very metal-poor ([Fe/H]<~-2.5) end. These starswere especially selected to cover gaps in previous works onTeff versus color relations, particularly the IRFMTeff scale of A. Alonso and collaborators. Our IRFMimplementation was largely based on the Alonso et al. study (absoluteinfrared flux calibration, bolometric flux calibration, etc.) with theaim of extending the ranges of applicability of their Teffversus color calibrations. In addition, in order to improve the internalaccuracy of the IRFM Teff scale, we recomputed thetemperatures of almost all stars from the Alonso et al. work usingupdated input data. The updated temperatures do not significantly differfrom the original ones, with few exceptions, leaving the Teffscale of Alonso et al. mostly unchanged. Including the stars withupdated temperatures, a large sample of 580 dwarf and 470 giant stars(in the field and in clusters), which cover the ranges3600K<~Teff<~8000K and -4.0<~[Fe/H]<~+0.5, haveTeff homogeneously determined with the IRFM. The meanuncertainty of the temperatures derived is 75 K for dwarfs and 60 K forgiants, which is about 1.3% at solar temperature and 4500 K,respectively. It is shown that the IRFM temperatures are reliable in anabsolute scale given the consistency of the angular diameters resultingfrom the IRFM with those measured by long baseline interferometry, lunaroccultation, and transit observations. Using the measured angulardiameters and bolometric fluxes, a comparison is made between IRFM anddirect temperatures, which shows excellent agreement, with the meandifference being less than 10 K for giants and about 20 K for dwarfstars (the IRFM temperatures being larger in both cases). This resultwas obtained for giants in the ranges 3800K

The Planet-Metallicity Correlation
We have recently carried out spectral synthesis modeling to determineTeff, logg, vsini, and [Fe/H] for 1040 FGK-type stars on theKeck, Lick, and Anglo-Australian Telescope planet search programs. Thisis the first time that a single, uniform spectroscopic analysis has beenmade for every star on a large Doppler planet search survey. We identifya subset of 850 stars that have Doppler observations sufficient todetect uniformly all planets with radial velocity semiamplitudes K>30m s-1 and orbital periods shorter than 4 yr. From this subsetof stars, we determine that fewer than 3% of stars with-0.5<[Fe/H]<0.0 have Doppler-detected planets. Above solarmetallicity, there is a smooth and rapid rise in the fraction of starswith planets. At [Fe/H]>+0.3 dex, 25% of observed stars have detectedgas giant planets. A power-law fit to these data relates the formationprobability for gas giant planets to the square of the number of metalatoms. High stellar metallicity also appears to be correlated with thepresence of multiple-planet systems and with the total detected planetmass. This data set was examined to better understand the origin of highmetallicity in stars with planets. None of the expected fossilsignatures of accretion are observed in stars with planets relative tothe general sample: (1) metallicity does not appear to increase as themass of the convective envelopes decreases, (2) subgiants with planetsdo not show dilution of metallicity, (3) no abundance variations for Na,Si, Ti, or Ni are found as a function of condensation temperature, and(4) no correlations between metallicity and orbital period oreccentricity could be identified. We conclude that stars with extrasolarplanets do not have an accretion signature that distinguishes them fromother stars; more likely, they are simply born in higher metallicitymolecular clouds.Based on observations obtained at Lick and Keck Observatories, operatedby the University of California, and the Anglo-Australian Observatories.

Stars within 15 Parsecs: Abundances for a Northern Sample
We present an abundance analysis for stars within 15 pc of the Sunlocated north of -30° declination. We have limited our abundancesample to absolute magnitudes brighter than +7.5 and have eliminatedseveral A stars in the local vicinity. Our final analysis list numbers114 stars. Unlike Allende Prieto et al. in their consideration of a verysimilar sample, we have enforced strict spectroscopic criteria in thedetermination of atmospheric parameters. Nevertheless, our results arevery similar to theirs. We determine the mean metallicity of the localregion to be <[Fe/H]>=-0.07 using all stars and -0.04 when interlopersfrom the thick disk are eliminated.

Metallicity of M dwarfs. I. A photometric calibration and the impact on the mass-luminosity relation at the bottom of the main sequence
We obtained high resolution ELODIE and CORALIE spectra for bothcomponents of 20 wide visual binaries composed of an F-, G- or K-dwarfprimary and an M-dwarf secondary. We analyse the well-understood spectraof the primaries to determine metallicities ([Fe/H]) for these 20systems, and hence for their M dwarf components. We pool thesemetallicities with determinations from the literature to obtain aprecise (±0.2 dex) photometric calibration of M dwarfmetallicities. This calibration represents a breakthrough in a fieldwhere discussions have had to remain largely qualitative, and it helpsus demonstrate that metallicity explains most of the large dispersion inthe empirical V-band mass-luminosity relation. We examine themetallicity of the two known M-dwarf planet-host stars, Gl876 (+0.02 dex) and Gl 436 (-0.03 dex), inthe context of preferential planet formation around metal-rich stars. Wefinally determine the metallicity of the 47 brightest single M dwarfs ina volume-limited sample, and compare the metallicity distributions ofsolar-type and M-dwarf stars in the solar neighbourhood.

CHARM2: An updated Catalog of High Angular Resolution Measurements
We present an update of the Catalog of High Angular ResolutionMeasurements (CHARM, Richichi & Percheron \cite{CHARM}, A&A,386, 492), which includes results available until July 2004. CHARM2 is acompilation of direct measurements by high angular resolution methods,as well as indirect estimates of stellar diameters. Its main goal is toprovide a reference list of sources which can be used for calibrationand verification observations with long-baseline optical and near-IRinterferometers. Single and binary stars are included, as are complexobjects from circumstellar shells to extragalactic sources. The presentupdate provides an increase of almost a factor of two over the previousedition. Additionally, it includes several corrections and improvements,as well as a cross-check with the valuable public release observationsof the ESO Very Large Telescope Interferometer (VLTI). A total of 8231entries for 3238 unique sources are now present in CHARM2. Thisrepresents an increase of a factor of 3.4 and 2.0, respectively, overthe contents of the previous version of CHARM.The catalog is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/431/773

Time-spectra of chromospheric activity of old solar-type stars: detection of rotational signals from double wavelet analysis
We introduce a novel technique, called the double wavelet analysis(DWA), for the determination of stellar rotation periods from timeserial data. This first paper aims narrowly at the discussion,introduction and application of the DWA technique to records of surfacemagnetism in solar-type (relatively old) lower main sequence stars thatare obtained by the Mount Wilson Observatory (MWO) HK Project. Thetechnique takes a series of careful steps that seek to optimize waveletparameters and normalization schemes, ultimately allowing fine-tuned,arguably more accurate, estimates of rotation-modulated signals (with,e.g., periods of days to months) in records that contain longerperiodicities such as stellar magnetic activity cycles (with, e.g.,period of years). The apparent rotation periods estimated from the DWAtechnique are generally consistent with results from both ``first-pass''(i.e., ordinary) global wavelet spectrum and earlier classicalperiodogram analyses. But there are surprises as well. For example, therotation period of the ancient subdwarf Goombridge 1830 (HD 103095),previously identified as ~31 days, suggests under the DWAtechnique a significantly slower period of 60 days. DWA spectra alsogenerally reveal a shift in the cycle period toward high frequencies(hence shorter periods) compared to the first-pass wavelet spectrum. Forsolar-type stars analyzed here, the character of the DWA spectrum andslope of the first-pass global wavelet spectrum produce a classificationscheme that allows a star's record to be placed into one of threecategories.

Improved Baade-Wesselink surface brightness relations
Recent, and older accurate, data on (limb-darkened) angular diameters iscompiled for 221 stars, as well as BVRIJK[12][25] magnitudes for thoseobjects, when available. Nine stars (all M-giants or supergiants)showing excess in the [12-25] colour are excluded from the analysis asthis may indicate the presence of dust influencing the optical andnear-infrared colours as well. Based on this large sample,Baade-Wesselink surface brightness (SB) relations are presented fordwarfs, giants, supergiants and dwarfs in the optical and near-infrared.M-giants are found to follow different SB relations from non-M-giants,in particular in V versus V-R. The preferred relation for non-M-giantsis compared to the earlier relation by Fouqué and Gieren (basedon 10 stars) and Nordgren et al. (based on 57 stars). Increasing thesample size does not lead to a lower rms value. It is shown that theresiduals do not correlate with metallicity at a significant level. Thefinally adopted observed angular diameters are compared to thosepredicted by Cohen et al. for 45 stars in common, and there isreasonable overall, and good agreement when θ < 6 mas.Finally, I comment on the common practice in the literature to average,and then fix, the zero-point of the V versus V-K, V versus V-R and Kversus J-K relations, and then rederive the slopes. Such a commonzero-point at zero colour is not expected from model atmospheres for theV-R colour and depends on gravity. Relations derived in this way may bebiased.

Chromospheric Ca II Emission in Nearby F, G, K, and M Stars
We present chromospheric Ca II H and K activity measurements, rotationperiods, and ages for ~1200 F, G, K, and M type main-sequence stars from~18,000 archival spectra taken at Keck and Lick Observatories as a partof the California and Carnegie Planet Search Project. We have calibratedour chromospheric S-values against the Mount Wilson chromosphericactivity data. From these measurements we have calculated medianactivity levels and derived R'HK, stellar ages,and rotation periods from general parameterizations for 1228 stars,~1000 of which have no previously published S-values. We also presentprecise time series of activity measurements for these stars.Based on observations obtained at Lick Observatory, which is operated bythe University of California, and on observations obtained at the W. M.Keck Observatory, which is operated jointly by the University ofCalifornia and the California Institute of Technology. The KeckObservatory was made possible by the generous financial support of theW. M. Keck Foundation.

Cooler and Bigger than Previously Thought? Planetary Host Stellar Parameters from the Infrared Flux Method
Effective temperatures and radii for 92 planet-hosting stars asdetermined from the infrared flux method (IRFM) are presented andcompared with those given by other authors using different approaches.The IRFM temperatures we have derived are systematically lower thanthose determined from the spectroscopic condition of excitationequilibrium, the mean difference being as large as 110 K. They are,however, consistent with previous IRFM studies and with the colorsderived from Kurucz and MARCS model atmospheres. Comparison with directmeasurements of stellar diameters for seven dwarf stars thatapproximately cover the range of temperatures of the planet-hostingstars suggest that the IRFM radii and temperatures are reliable in anabsolute scale. A better understanding of the fundamental properties ofstars with planets will be achieved once this discrepancy between theIRFM and the spectroscopic temperature scales is resolved.

Further Results of TiO-Band Observations of Starspots
We present measurements of starspot parameters (temperature and fillingfactor) on five highly active stars, using absorption bands of TiO, fromobservations made between 1998 March and 2001 December. We determinedstarspot parameters by fitting TiO bands using spectra of inactive G andK stars as proxies for the unspotted photospheres of the active starsand spectra of M stars as proxies for the spots. For three evolved RSCVn systems, we find spot filling factors between 0.28 and 0.42 for DMUMa, 0.22 and 0.40 for IN Vir, and 0.31 and 0.35 for XX Tri; thesevalues are similar to those found by other investigators usingphotometry and Doppler imaging. Among active dwarfs, we measured a lowerspot temperature (3350 K) for EQ Vir than found in a previous study ofTiO bands, and for EK Dra a lower spot temperature (~3800 K) than foundthrough photometry. For all active stars but XX Tri, we achieved goodphase coverage through a stellar rotational period. We also present ourfinal, extensive grid of spot and nonspot proxy stars.This paper includes data taken at McDonald Observatory of the Universityof Texas at Austin.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

NEXXUS: A comprehensive ROSAT survey of coronal X-ray emission among nearby solar-like stars
We present a final summary of all ROSAT X-ray observations of nearbystars. All available ROSAT observations with the ROSAT PSPC, HRI and WFChave been matched with the CNS4 catalog of nearby stars and the resultsgathered in the Nearby X-ray and XUV-emitting Stars data base, availablevia www from the Home Page of the Hamburger Sternwarte at the URLhttp://www.hs.uni-hamburg.de/DE/For/Gal/Xgroup/nexxus. Newvolume-limited samples of F/G-stars (dlim = 14 pc), K-stars(dlim = 12 pc), and M-stars (dlim = 6 pc) areconstructed within which detection rates of more than 90% are obtained;only one star (GJ 1002) remains undetected in a pointed follow-upobservation. F/G-stars, K-stars and M-stars have indistinguishablesurface X-ray flux distributions, and the lower envelope of the observeddistribution at FX ≈ 104 erg/cm2/sis the X-ray flux level observed in solar coronal holes. Large amplitudevariations in X-ray flux are uncommon for solar-like stars, but maybemore common for stars near the bottom of the main sequence; a largeamplitude flare is reported for the M star LHS 288. Long term X-raylight curves are presented for α Cen A/B and Gl 86, showingvariations on time scales of weeks and demonstrating that α Cen Bis a flare star.Tables 1-3 are also available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/417/651

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 Parsecs: The Northern Sample. I.
We have embarked on a project, under the aegis of the Nearby Stars(NStars)/Space Interferometry Mission Preparatory Science Program, toobtain spectra, spectral types, and, where feasible, basic physicalparameters for the 3600 dwarf and giant stars earlier than M0 within 40pc of the Sun. In this paper, we report on the results of this projectfor the first 664 stars in the northern hemisphere. These resultsinclude precise, homogeneous spectral types, basic physical parameters(including the effective temperature, surface gravity, and overallmetallicity [M/H]), and measures of the chromospheric activity of ourprogram stars. Observed and derived data presented in this paper arealso available on the project's Web site.

Abundance Analysis of Planetary Host Stars. I. Differential Iron Abundances
We present atmospheric parameters and iron abundances derived fromhigh-resolution spectra for three samples of dwarf stars: stars that areknown to host close-in giant planets (CGP), stars for which radialvelocity data exclude the presence of a close-in giant planetarycompanion (no-CGP), as well as a random sample of dwarfs with a spectraltype and magnitude distribution similar to that of the planetary hoststars (control). All stars have been observed with the same instrumentand have been analyzed using the same model atmospheres, atomic data,and equivalent width modeling program. Abundances have been deriveddifferentially to the Sun, using a solar spectrum obtained with Callistoas the reflector with the same instrumentation. We find that the ironabundances of CGP dwarfs are on average 0.22 dex greater than that ofno-CGP dwarfs. The iron abundance distributions of both the CGP andno-CGP dwarfs are different than that of the control dwarfs, while thecombined iron abundances have a distribution that is very similar tothat of the control dwarfs. All four samples (CGP, no-CGP, combined, andcontrol) have different effective temperature distributions. We showthat metal enrichment occurs only for CGP dwarfs with temperatures justbelow solar and ~300 K higher than solar, whereas the abundancedifference is insignificant at Teff around 6000 K.

First radius measurements of very low mass stars with the VLTI
We present 4 very low mass stars radii measured with the VLTI using the2.2 mu m VINCI test instrument. The observations were carried out duringthe commissioning of the 104-meter-baseline with two 8-meter-telescopes.We measure angular diameters of 0.7-1.5 mas with accuracies of 0.04-0.11mas, and for spectral type ranging from M0V to M5.5V. We determine anempirical mass-radius relation for M dwarfs based on all availableradius measurements. The observed relation agrees well with theoreticalmodels at the present accuracy level, with possible discrepancy around0.5-0.8 Msun that needs to be confirmed. In the near future,dozens of M dwarfs radii will be measured with 0.1-1% accuracy, with theVLTI, thanks to the improvements expected from the near infraredinstrument AMBER. This will bring strong observational constraints onboth atmosphere and interior physics.Based on observations made with the European Southern Observatorytelescopes and obtained from the ESO/ST-ECF Science Archive Facility.

Multiplicity among solar-type stars. III. Statistical properties of the F7-K binaries with periods up to 10 years
Two CORAVEL radial velocity surveys - one among stars in the solarneighbourhood, the other in the Pleiades and in Praesepe - are merged toderive the statistical properties of main-sequence binaries withspectral types F7 to K and with periods up to 10 years. A sample of 89spectroscopic orbits was finally obtained. Among them, 52 relate to afree-of-bias selection of 405 stars (240 field stars and 165 clusterstars). The statistics corrected for selection effects yield thefollowing results: (1) No discrepancy is found between the binariesamong field stars and the binaries in open cluster. The distributions ofmass ratios, of periods, the period-eccentricity diagram and the binaryfrequencies are all within the same error intervals. (2) Thedistribution of mass ratios presents two maxima: a broad peak from q ~0.2 to q ~ 0.7, and a sharp peak for q > 0.8 (twins). Both arepresent among the early-type as well as among the late-type part of thesample, indicating a scale-free formation process. The peak for q >0.8 gradually decreases when long-period binaries are considered.Whatever their periods, the twins have eccentricities significantlylower than the other binaries, confirming a difference in the formationprocesses. Twins could be generated by in situ formation followed byaccretion from a gaseous envelope, whereas binaries with intermediatemass ratios could be formed at wide separations, but they are madecloser by migration led by interactions with a circumbinary disk. (3)The frequency of binaries with P<10 years is about 14%. (4) About0.3% of binaries are expected to appear as false positives in a planetsearch. Therefore, the frequency of planetary systems among stars ispresently 7+4-2%. The extension of thedistribution of mass ratios in the planetary range would result in avery sharp and very high peak, well separated from the binary stars withlow mass ratios. Based on photoelectric radial-velocity measurementscollected at Haute-Provence observatory and on observations made withthe ESA Hipparcos astrometry satellite.

The stellar activity-rotation relationship revisited: Dependence of saturated and non-saturated X-ray emission regimes on stellar mass for late-type dwarfs
We present the results of a new study on the relationship betweencoronal X-ray emission and stellar rotation in late-type main-sequencestars. We have selected a sample of 259 dwarfs in the B-V range 0.5-2.0,including 110 field stars and 149 members of the Pleiades, Hyades, alphaPersei, IC 2602 and IC 2391 open clusters. All the stars have beenobserved with ROSAT, and most of them have photometrically-measuredrotation periods available. Our results confirm that two emissionregimes exist, one in which the rotation period is a good predictor ofthe total X-ray luminosity, and the other in which a constant saturatedX-ray to bolometric luminosity ratio is attained; we present aquantitative estimate of the critical rotation periods below which starsof different masses (or spectral types) enter the saturated regime. Inthis work we have also empirically derived a characteristic time scale,taue , which we have used to investigate the relationshipbetween the X-ray emission level and an X-ray-based Rossby numberRe = Prot/taue: we show that ourempirical time scale taue resembles the theoreticalconvective turnover time for 0.4 <~ M/Msun <~ 1.2, butit also has the same functional dependence on B-V asLbol-1/2 in the color range 0.5 <~ B-V <~1.5. Our results imply that - for non-saturated coronae - theLx - Prot relation is equivalent to theLx/Lbol vs. Re relation. Tables 1 and 2are only available in electronic form at \ http://www.edpsciences.org

Yeni bir Makale Öner


Ýlgili Baðlantýlar

  • - Baðlantý Bulunamadý -
Yeni Bir Baðlantý Öner


sonraki gruplarýn üyesi:


Gözlemler ve gökölçümü verileri

Takýmyýldýz:Balina
Sað Açýklýk:02h36m04.90s
Yükselim:+06°53'13.0"
Görünürdeki Parlaklýk:5.82
Uzaklýk:7.209 parsek

Kataloglar ve belirtme:
Özgün isimleri
HD 1989HD 16160
USNO-A2.0USNO-A2 0900-00607612
BSC 1991HR 753

→ VizieR 'den daha fazla katalog ve tanýmlama isteyin