Home     Getting Started     New Pictures     Picture of the Day     Blog New!     Login  

TYC 2851-2131-1


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Bayesian inference of stellar parameters and interstellar extinction using parallaxes and multiband photometry
Astrometric surveys provide the opportunity to measure the absolutemagnitudes of large numbers of stars, but only if the individualline-of-sight extinctions are known. Unfortunately, extinction is highlydegenerate with stellar effective temperature when estimated frombroad-band optical/infrared photometry. To address this problem, Iintroduce a Bayesian method for estimating the intrinsic parameters of astar and its line-of-sight extinction. It uses both photometry andparallaxes in a self-consistent manner in order to provide anon-parametric posterior probability distribution over the parameters.The method makes explicit use of domain knowledge by employing theHertzsprung-Russell Diagram (HRD) to constrain solutions and to ensurethat they respect stellar physics. I first demonstrate this method byusing it to estimate effective temperature and extinction from BVJHKdata for a set of artificially reddened Hipparcos stars, for whichaccurate effective temperatures have been estimated from high-resolutionspectroscopy. Using just the four colours, we see the expected strongdegeneracy (positive correlation) between the temperature andextinction. Introducing the parallax, apparent magnitude and the HRDreduces this degeneracy and improves both the precision (reduces theerror bars) and the accuracy of the parameter estimates, the latter byabout 35 per cent. The resulting accuracy is about 200 K in temperatureand 0.2 mag in extinction. I then apply the method to estimate theseparameters and absolute magnitudes for some 47 000 F, G, K Hipparcosstars which have been cross-matched with Two-Micron All-Sky Survey(2MASS). The method can easily be extended to incorporate the estimationof other parameters, in particular metallicity and surface gravity,making it particularly suitable for the analysis of the 109stars from Gaia.

Radial Velocities of Population II Binary Stars. Ii.
Here we publish the second list of radial velocities for 91 Hipparcosstars, mostly high transverse velocity binaries without previous radialvelocity measurements. The measurements of radial velocities are donewith a CORAVEL-type radial velocity spectrometer with an accuracy betterthan 1 km/s. We also present the information on eight new radialvelocity variables -- HD 29696, HD 117466 AB, BD +28 4035 AB, BD +302129 A, BD +39 1828 AB, BD +69 230 A, BD +82 565 A and TYC 2267-1300-1-- found from our measurements. Two stars (HD 27961 AB and HD 75632 AB)are suspected as possible radial velocity variables.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Perseus
Right ascension:03h01m23.16s
Declination:+40°15'46.2"
Apparent magnitude:9.226
Proper motion RA:-10.6
Proper motion Dec:-5.7
B-T magnitude:10.533
V-T magnitude:9.334

Catalogs and designations:
Proper Names
TYCHO-2 2000TYC 2851-2131-1
USNO-A2.0USNO-A2 1275-01941535
HIPHIP 14076

→ Request more catalogs and designations from VizieR