Главная     Введение     Новые рисунки     Рисунок дня     Blog New!     Войти  

M 71


Оглавление

Изображения

Загрузить ваше изображение

DSS Images   Other Images


Публикации по объекту

CN Abundance Inhomogeneities in the Globular Cluster Messier 13 (NGC 6205): Results Based on Merged Data Sets from the Literature
The globular cluster Messier 13 (NGC 6205) has been shown by a number ofdifferent studies to be chemically inhomogeneous with regard to elementsranging from C through Al. A database of λ3883 CN-band indices,carbon, oxygen, and sodium abundances for red giants in M13 has beencompiled and homogenized from a variety of literature sources. The dataare used to document the distribution of CN band strength among both redgiant branch (RGB) and asymptotic giant branch (AGB) stars brighter thanMV=+0.8, as well as the relationships between the CNinhomogeneities and the dispersions in other elements. The CNdistribution among the M13 RGB stars is bimodal, although a fewintermediate-CN red giants are present in the cluster. The AGB starsshow uniformly weak CN bands. The spread in CN band strength, onceempirically corrected for effective temperature and gravity differencesamong the red giants, is very well correlated with the sodium abundanceand is anticorrelated with oxygen. Above MV=+0.8, the carbonabundance of red giants decreases with increasing luminosity, as firstfound by N. Suntzeff. There is a rather modest anticorrelation betweenCN band strength and [C/Fe] among RGB stars of comparable magnitude. Theabundance patterns within M13 can be interpreted as a primordial (orpre-RGB phase) abundance spread, coupled with the later effects of deepmixing within the red giants. In the CN-weak giants and those CN-strongstars with [O/Fe]~-0.2+/-0.2 dex on the upper RGB, deep mixing seems tohave been limited largely to the dredge-up of C-->N-processedmaterial. By contrast, there are some M13 stars, most notably a group ofvery oxygen-deficient giants near the RGB tip, but perhaps also afraction of CN-strong giants with lesser oxygen depletions, in whichsome measure of O-->N-processed material also appears to have beenbrought to the surface.

Discovery of the first SX Phoenicis-type pulsating component in the semi-detached Algol-type eclipsing binary in M71 .
Through the time series CCD photometry to search for pulsating bluestraggler stars (BSSs), we discovered a pulsating feature with shortperiods about 0.03 day and small amplitude about 0.024 mag in theAlgol-type eclipsing binary QU Sge. The variable has an orbital periodof 3.790818 day and the primary minimum depth of Delta V = 1.333 mag.Eclipsing light curve solution shows that QU Sge has a semi-detachedbinary configuration with the secondary component totally filling itsRoche lobe.

Mergers of Close Primordial Binaries
We study the production of main-sequence mergers of tidally synchronizedprimordial short-period binaries. The principal ingredients of ourcalculation are the angular momentum loss rates inferred from thespin-down of open cluster stars and the distribution of binaryproperties in young open clusters. We compare our results with theexpected number of systems that experience mass transfer in thepost-main-sequence phases of evolution and compute the uncertainties inthe theoretical predictions. We estimate that main-sequence mergers canaccount for the observed number of single blue stragglers in M67.Applied to the blue straggler population, this implies that such mergersare responsible for about one-quarter of the population of halo bluemetal-poor stars and at least one-third of the blue stragglers in openclusters for systems older than 1 Gyr. The observed trends as a functionof age are consistent with a saturated angular momentum loss rate forrapidly rotating tidally synchronized systems. The predicted number ofblue stragglers from main-sequence mergers alone is comparable to thenumber observed in globular clusters, indicating that the net effect ofdynamical interactions in dense stellar environments is to reduce ratherthan increase the blue straggler population. A population of subturnoffmergers of order 3%-4% of the upper main sequence population is alsopredicted for stars older than 4 Gyr, which is roughly comparable to thesmall population of highly Li-depleted halo dwarfs. Other observationaltests are discussed.

Chandra X-Ray Observations of 19 Millisecond Pulsars in the Globular Cluster 47 Tucanae
We present spectral and long-timescale variability analyses of ChandraX-Ray Observatory ACIS-S observations of the 19 millisecond pulsars(MSPs) with precisely known positions in the globular cluster 47Tucanae. The X-ray emission of the majority of these MSPs is welldescribed by a thermal (blackbody or neutron star hydrogen atmosphere)spectrum with a temperature Teff~(1-3)×106K, emission radius Reff~0.1-3 km, and luminosityLX~1030-1031 ergs s-1. Forseveral MSPs, there are indications that a second thermal component isrequired, similar to what is seen in some nearby field MSPs. Theobserved radiation most likely originates from the heated magnetic polarcaps of the MSPs. The small apparent scatter in LX isconsistent with thermal emission from the polar caps of a global dipolefield, although the small emission areas may imply either a more complexsmall-scale magnetic field configuration near the neutron star surfaceor nonuniform polar cap heating. The radio eclipsing binary MSPs 47 TucJ, O, and W show a significant nonthermal (power-law) component, withspectral photon index Γ~1-1.5, which most likely originates in anintrabinary shock formed due to interaction between the relativisticpulsar wind and matter from the stellar companion. We reexamine theX-ray-spin-down luminosity relation (LX-E˙ relation) andfind that for the MSPs with thermal spectraLX~E˙β, where β~0.2+/-1.1. Due tothe large uncertainties in both parameters, the result is consistentwith both the linear LX-E˙ relation and the flatterLX~E˙0.5 predicted by polar cap heatingmodels. In terms of X-ray properties, we find no clear systematicdifferences between MSPs in globular clusters and in the field of theGalaxy. We discuss the implications of these results on the presentunderstanding of the X-ray emission properties of MSPs.

A New Milky Way Dwarf Satellite in Canes Venatici
In this Letter, we announce the discovery of a new dwarf satellite ofthe Milky Way, located in the constellation Canes Venatici. It was foundas a stellar overdensity in the north Galactic cap using Sloan DigitalSky Survey Data Release 5 (SDSS DR5). The satellite's color-magnitudediagram shows a well-defined red giant branch as well as a horizontalbranch. As judged from the tip of the red giant branch, it lies at adistance of ~220 kpc. Based on the SDSS data, we estimate an absolutemagnitude of MV~-7.9, a central surface brightness ofμ0,V~28 mag arcsec-2, and a half-light radiusof ~8.5 arcmin (~550 pc at the measured distance). The outer regions ofCanes Venatici appear extended and distorted. The discovery of such afaint galaxy in proximity to the Milky Way strongly suggests that moresuch objects remain to be found.

Various Modes of Helium Mixing in Globular Cluster Giants and Their Possible Effects on the Horizontal Branch Morphology
It has been known for a long time that some red giants in globularclusters exhibit large star-to-star variations in the abundances oflight elements that are not exhibited by field giants. This fact can betaken as evidence that the extra mixing mechanism(s) that operate inglobular cluster giants may be consequences of star-star interactions inthe dense stellar environment. In order to constrain the extra mixingmechanism(s), we study the influence of helium enrichment along the redgiant branch on the evolution of stars through the horizontal branch(HB). Three possible modes of helium enrichment are considered,associated with close encounters of stars in the globular clusters. Weshow that as a consequence of the variations in the core mass, as wellas in the total mass due to mass loss, the colors of horizontal branchmodels are distributed over almost the entire range of the horizontalbranch. The results are discussed in relation to a scenario for theorigin of the abundance anomalies and for the effects on the morphologyof the horizontal branch. We argue that the star-star interactions cannot only explain the source of the angular momentum of rapid rotationbut also provide a mechanism for the bimodal distribution of rotationrates in some globular clusters. We also propose the time elapsed fromthe latest core-collapse phase during the gravothermal oscillations asthe second parameter to explain the variations in HB morphology amongthe globular clusters.

Chemical Compositions of Red Giant Stars in Old Large Magellanic Cloud Globular Clusters
We have observed 10 red giant stars in four old Large Magellanic Cloudglobular clusters with the high-resolution spectrograph MIKE on theMagellan Landon Clay 6.5 m telescope. The stars in our sample have up to20 elemental abundance determinations for the α-, iron peak, andneutron-capture element groups. We have also derived abundances for thelight odd-Z elements Na and Al. We find NGC 2005 and NGC 2019 to be moremetal-rich than previous estimates from the Ca II triplet, and we derive[Fe/H] values closer to those obtained from the slope of the red giantbranch. However, we confirm previous determinations for Hodge 11 and NGC1898 to within 0.2 dex. The LMC cluster [Mg/Fe] and [Si/Fe] ratios arecomparable to the values observed in old Galactic globular clusterstars, as are the abundances [Y/Fe], [Ba/Fe], and [Eu/Fe]. The LMCclusters do not share the low-Y behavior observed in some dwarfspheroidal galaxies. [Ca/Fe], [Ti/Fe], and [V/Fe] in the LMC, however,are significantly lower than what is seen in the Galactic globularcluster system. Neither does the behavior of [Cu/Fe] as a function of[Fe/H] in our LMC clusters match the trend seen in the Galaxy, stayinginstead at a constant value of roughly -0.8. Because not all[α/Fe] ratios are suppressed, these abundance ratios cannot beattributed solely to the injection of Type Ia supernova material andinstead reflect the differences in star formation history of the LMCversus the Milky Way. An extensive numerical experimental study wasperformed, varying both input parameters and stellar atmosphere models,to verify that the unusual abundance ratios derived in this study arenot the result of the adopted atomic parameters, stellar atmospheres, orstellar parameters. We conclude that many of the abundances in the LMCglobular clusters we observed are distinct from those observed in theMilky Way, and these differences are intrinsic to the stars in thosesystems.

Mg Isotope Ratios in Giant Stars of the Globular Clusters M13 and M71
We present Mg isotope ratios in four red giants of the globular clusterM13 and one red giant of the globular cluster M71 based onhigh-resolution, high signal-to-noise ratio spectra obtained with HDS onthe Subaru Telescope. We confirm earlier results by Shetrone that forM13 the ratio varies from(25Mg+26Mg)/24Mg~=1 in stars with thehighest Al abundance to(25Mg+26Mg)/24Mg~=0.2 in stars with thelowest Al abundance. However, we separate the contributions of all threeisotopes and find a considerable spread in the ratio24Mg:25Mg:26Mg, with values rangingfrom 48:13:39 to 78:11:11. As in NGC 6752, we find a positivecorrelation between 26Mg and Al, an anticorrelation between24Mg and Al, and no correlation between 25Mg andAl. In M71, our one star has a Mg isotope ratio of 70:13:17. For bothclusters, even the lowest ratios of 25Mg/24Mg and26Mg/24Mg exceed those observed in field stars atthe same metallicity, a result also found in NGC 6752. The contributionof 25Mg to the total Mg abundance is constant within a givencluster and between clusters with25Mg/(24Mg+25Mg+26Mg)~=0.13.For M13 and NGC 6752, the ranges of the Mg isotope ratios are similarand both clusters show the same correlations between Al and Mg isotopes,suggesting that the same process is responsible for the abundancevariations in these clusters. While existing models fail to reproduceall the observed abundances, we continue to favor the scenario in whichtwo generations of asymptotic giant branch (AGB) stars produce theobserved abundances. A first generation of metal-poor AGB stars pollutesthe entire cluster and is responsible for the large ratios of25Mg/24Mg and 26Mg/24Mgobserved in cluster stars with compositions identical to field stars atthe same metallicity. Differing degrees of pollution by a secondgeneration of AGB stars of the same metallicity as the cluster providesthe star-to-star scatter in Mg isotope ratios.Based on data collected at the Subaru Telescope, which is operated bythe National Astronomical Observatory of Japan.

Discovery of an SX Phoenicis Type Pulsating Component in the Algol-Type Semidetached Eclipsing Binary QU Sagittae in M71
We report the discovery of an SX Phoenicis type pulsating component inthe Algol-type semidetached eclipsing binary QU Sge, in the metal-richglobular cluster M71. QU Sge is only about 80" from the center of M71and is located in the blue straggler region in the color-magnitudediagram of M71. It is considered to be a probable member of M71, with amembership probability greater than 60% deduced from a proper-motionstudy in the literature. From time-series CCD photometry, we find thatQU Sge has an orbital period of 3.790818 days and a primary minimumdepth of ΔV=1.333 mag. The eclipsing light curve solution showsthat QU Sge has a semidetached binary configuration with the secondarycomponent fully filling its Roche lobe. After subtracting the eclipsesfrom the light curve, we discover an SX Phoenicis type pulsationfeature. It is found to have a short period of about 0.03 days and asmall amplitude of about 0.024 mag. This is the first eclipsing binarysystem in a globular cluster to exhibit a pulsating feature. This resultsupports the model in which the origin of some blue stragglers inglobular clusters is mass transfer between two components in theprimordial binary systems.

Manganese Abundances in Cluster and Field Stars
We have derived Mn abundances for more than 200 stars in 19 globularclusters. In addition, Mn abundance determinations have been made for acomparable number of halo field and disk stars possessing an overlappingrange of metallicities and stellar parameters. Our primary data set wascomprised of high-resolution spectra previously acquired at theMcDonald, Lick, and Keck Observatories. To enlarge our data pool, weacquired globular and open cluster spectra from several otherinvestigators. Data were analyzed using synthetic spectra of the 6000Å Mn I triplet. Hyperfine structure parameters were included inthe synthetic spectra computations. Our analysis shows that for themetallicity range -0.7>[Fe/H]>-2.7, stars of 19 globular clustershave a mean relative abundance of <[Mn/Fe]>=-0.37+/-0.01(σ=0.10), a value in agreement with that of the field stars,<[Mn/Fe]>=-0.36+/-0.01 (σ=0.08). Despite the 2 orders ofmagnitude span in metallicity, the <[Mn/Fe]> ratio remainsconstant in both stellar populations. Our Mn abundance data indicatethat there is no appreciable variation in the relative nucleosyntheticcontribution from massive stars that undergo core-collapse supernovaeand thus no significant change of the associated initial mass functionin the specified metallicity range.

Abundances in Red Giant Stars of NGC 2808 and Correlations between Chemical Anomalies and Global Parameters in Globular Clusters
We present the abundance analysis of stars from the tip of the red giantbranch (RGB) to below the RGB bump in the globular cluster NGC 2808based on high-resolution echelle spectra. We derive abundances of Al,α-process elements (Si I, Ca I, Ti I, and Ti II), and Fe-groupelements (Sc II, V I, Cr I, Cr II, Mn I, Co I, and Ni I). Apart from Mgbeing somewhat reduced, likely because it has been depleted at theexpense of Al in the MgAl cycle, the other α-element ratios showthe overabundance typical of halo stars of similar metallicity. Mn isunderabundant, whereas Fe-group elements have typical abundance ratiosnear the solar value. We detect star-to-star differences in Alabundances from the RGB tip down to the faintest star below the RGBbump, correlated with Na abundances at all luminosities. The slope ofthe Na-Al correlation is similar to the one found in M13 by Sneden etal., but it is different from those in other globular clusters ofsimilar metallicity. We find that the amount of chemical inhomogeneitiesalong the Na-O and Mg-Al anticorrelations in globular cluster red giantsis correlated with the present-day cluster mass and ellipticity.Moreover, we find for the first time a correlation between the spread inproton-capture elements and orbital parameters of clusters. The chemicalanomalies are more extended in clusters having large-sized orbits andlonger periods and those with larger inclination angles of the orbitwith respect to the Galactic plane.Based on data collected at the European Southern Observatory, Chile,during the FLAMES Science Verification program with the Ultraviolet andVisual Echelle Spectrograph at the VLT-UT2.

UBVI CCD Photometry of the Old Open Cluster Berkeley 17
Photometric UBVI CCD photometry is presented for NGC 188 and Berkeley17. Color-magnitude diagrams (CMDs) are constructed and reach well pastthe main-sequence turnoff for both clusters. Cluster ages are determinedby means of isochrone fitting to the cluster CMDs. These fits areconstrained to agree with spectroscopic metallicity and reddeningestimates. Cluster ages are determined to be 7.0+/-0.5 Gyr for NGC 188and 10.0+/-1.0 Gyr for Berkeley 17, where the errors refer touncertainties in the relative age determinations. These ages arecompared to the ages of relatively metal-rich inner halo/thick-diskglobular clusters and other old open clusters. Berkeley 17 and NGC 6791are the oldest open clusters, with ages of 10 Gyr. They are 2 Gyryounger than the thick-disk globular clusters. These results confirm thestatus of Berkeley 17 as one of the oldest known open clusters in theMilky Way, and its age provides a lower limit to the age of the Galacticdisk.

vbyCaHβ CCD Photometry of Clusters. VI. The Metal-deficient Open Cluster NGC 2420
CCD photometry on the intermediate-band vbyCaHβ system is presentedfor the metal-deficient open cluster NGC 2420. Restricting the data toprobable single members of the cluster using the CMD and the photometricindices alone generates a sample of 106 stars at the cluster turnoff.The average E(b-y)=0.035+/-0.003 (s.e.m.) or E(B-V)=0.050+/-0.004(s.e.m.), where the errors refer to internal errors alone. With thisreddening, [Fe/H] is derived from both m1 and hk, using b-yand Hβ as the temperature index. The agreement among the fourapproaches is reasonable, leading to a final weighted average of[Fe/H]=-0.37+/-0.05 (s.e.m.) for the cluster, on a scale where theHyades has [Fe/H]=+0.12. When combined with the abundances from DDOphotometry and from recalibrated low-resolution spectroscopy, the meanmetallicity becomes [Fe/H]=-0.32+/-0.03. It is also demonstrated thatthe average cluster abundances based on either DDO data orlow-resolution spectroscopy are consistently reliable to 0.05 dex orbetter, contrary to published attempts to establish an open clustermetallicity scale using simplistic offset corrections among differentsurveys.

Broad-band photometric colors and effective temperature calibrations for late-type giants. II. Z < 0.02
We investigate the effects of metallicity on the broad-band photometriccolors of late-type giants, and make a comparison of synthetic colorswith observed photometric properties of late-type giants over a widerange of effective temperatures (T_eff=3500-4800 K) and gravities (logg=0.0-2.5), at [M/H]=-1.0 and -2.0. The influence of metallicity on thesynthetic photometric colors is small at effective temperatures above 3800 K, but the effects grow larger at lower T_eff, due to the changingefficiency of molecule formation which reduces molecular opacities atlower [M/H]. To make a detailed comparison of the synthetic and observedphotometric colors of late type giants in the T_eff-color andcolor-color planes (which is done at two metallicities, [M/H]=-1.0 and-2.0), we derive a set of new T_eff-log g-color relations based onsynthetic photometric colors, at [M/H]=-0.5, -1.0, -1.5, and -2.0. Theserelations are based on the T_eff-log g scales that we derive employingliterature data for 178 late-type giants in 10 Galactic globularclusters (with metallicities of the individual stars between [M/H]=-0.7and -2.5), and synthetic colors produced with the PHOENIX, MARCS andATLAS stellar atmosphere codes. Combined with the T_eff-log g-colorrelations at [M/H]=0.0 (Kučinskas et al. 2005), the set of newrelations covers metallicities [M/H]=0.0dots-2.0 (Δ[M/H]=0.5),effective temperatures T_eff=3500dots4800 K (Δ T_eff=100 K), andgravities log g=-0.5dots3.0. The new T_eff-log g-color relations are ingood agreement with published T_eff-color relations based on observedproperties of late-type giants, both at [M/H]=-1.0 and -2.0. Thedifferences in all T_eff-color planes are typically well within 100 K.We find, however, that effective temperatures predicted by the scalesbased on synthetic colors tend to be slightly higher than thoseresulting from the T_eff-color relations based on observations, with theoffsets up to 100 K. This is clearly seen both at [M/H]=-1.0 and -2.0,especially in the T_eff-(B-V) and T_eff-(V-K) planes. The consistencybetween T_eff-log g-color scales based on synthetic colors calculatedwith different stellar atmosphere codes is very good, with typicaldifferences being well within Δ T_eff ˜ 70 K at [M/H]=-1.0 andΔ T_eff ˜ 40 K at [M/H]=-2.0.

Multivariate analysis of globular cluster horizontal branch morphology: searching for the second parameter
Aims.The interpretation of globular cluster horizontal branch (HB)morphology is a classical problem that can significantly blur ourunderstanding of stellar populations. Methods: .We present a newmultivariate analysis connecting the effective temperature extent of theHB with other cluster parameters. The work is based on Hubble SpaceTelescope photometry of 54 Galactic globular clusters. Results: .The present study reveals the important role of the total mass of theglobular cluster on its HB morphology. More massive clusters tend tohave HBs more extended to higher temperatures. For a set of three inputvariables including the temperature extension of the HB, [Fe/H] and M_V,the first two eigenvectors account for 90% of the total samplevariance. Conclusions: . Possible effects of clusterself-pollution on HB morphology, stronger in more massive clusters,could explain the results derived here.

Na-O anticorrelation and HB. I. The Na-O anticorrelation in NGC 2808
We derived the atmospheric parameters and elemental abundances of Fe, O,and Na for about 120 red giant stars in the Galactic globular clusterNGC 2808. Our results are based on the analysis of medium-highresolution (R=22 000{-}24 000) GIRAFFE spectra acquired with the FLAMESspectrograph at VLT-UT2 as a part of a project aimed at studying theNa-O anticorrelation as a function of physical parameters in globularclusters. We present the anticorrelation of Na and O abundances in NGC2808 here, and discuss the distribution function of stars along thisrelation. Besides a bulk of O-normal stars with the typical compositionof field halo stars, NGC 2808 seems to host two other groups of O-poorand super O-poor stars. In this regard, NGC 2808 is similar to M 13, thetemplate cluster for the Na-O anticorrelation. However, in contrast to M13, most stars in NGC 2808 are O-rich. This might be related to thehorizontal branch morphologies that are very different in these twoclusters. The average metallicity we found for NGC 2808 is [Fe/H]=-1.10(rms = 0.065 dex, from 123 stars). We also found some evidence of asmall intrinsic spread in metallicity, but more definitive conclusionsare hampered by the presence of a small differential reddening.

VLT-UVES analysis of two giants in the bulge metal-poor globular cluster HP-1. Analysis of two giants in HP-1
Context: .Metal-poor globular clusters in the bulge are importanttracers of early chemical evolution. HP-1 is among the six metal-poorclusters within 5° of the Galactic center, and could be the oneclosest to the centerAims. The main purpose of this study is thedetermination of metallicity and elemental ratios. Methods.Highresolution spectra of two giants of the bulge globular cluster HP-1 wereobtained at the 8 m VLT UT2-Kueyen telescope with the UVES spectrograph.This is the second metal-poor globular cluster in the bulge for which adetailed abundance analysis is presented. MultibandV,I,J,H,Ks photometry was used to derive effectivetemperatures.Results. The present analysis provides a metallicity [Fe/H]= -1.00±0.2. The α-elements oxygen and silicon show [α/Fe] ≈ +0.3, whereas magnesium, calcium and titanium showsolar ratios. A proper motion analysis indicates that the two stars arecluster members. Conclusions.The metallicity is unexpected for a blueHorizontal Branch (BHB) cluster. HP-1 is the first known cluster withsuch a high metallicity combined with a BHB and a steep Red Giant Branch(RGB). Together with NGC 6388 and NGC 6441 of [Fe/H]˜-0.6 it wouldbe third with such characteristics, but it differs from them, sincethese two other clusters have also a populous Red HB, and a normal slopeof the RGB for their metallicity, which is not the case of HP-1.

Caroline Herschel as observer
Not Available

Resolved Massive Star Clusters in the Milky Way and Its Satellites: Brightness Profiles and a Catalog of Fundamental Parameters
We present a database of structural and dynamical properties for 153spatially resolved star clusters in the Milky Way, the Large and SmallMagellanic Clouds, and the Fornax dwarf spheroidal. This databasecomplements and extends others in the literature, such as those ofHarris and Mackey & Gilmore. Our cluster sample comprises 50 ``youngmassive clusters'' in the LMC and SMC, and 103 old globular clustersbetween the four galaxies. The parameters we list include central andhalf-light-averaged surface brightnesses and mass densities; core andeffective radii; central potentials, concentration parameters, and tidalradii; predicted central velocity dispersions and escape velocities;total luminosities, masses, and binding energies; central phase-spacedensities; half-mass relaxation times; and ``κ-space'' parameters.We use publicly available population-synthesis models to computestellar-population properties (intrinsic B-V colors, reddenings, andV-band mass-to-light ratios) for the same 153 clusters plus another 63globulars in the Milky Way. We also take velocity-dispersionmeasurements from the literature for a subset of 57 (mostly old)clusters to derive dynamical mass-to-light ratios for them, showing thatthese compare very well to the population-synthesis predictions. Thecombined data set is intended to serve as the basis for futureinvestigations of structural correlations and the fundamental plane ofmassive star clusters, including especially comparisons between thesystemic properties of young and old clusters.The structural and dynamical parameters are derived from fitting threedifferent models-the modified isothermal sphere of King; an alternatemodified isothermal sphere based on the ad hoc stellar distributionfunction of Wilson; and asymptotic power-law models withconstant-density cores-to the surface-brightness profile of eachcluster. Surface-brightness data for the LMC, SMC, and Fornax clustersare based in large part on the work of Mackey & Gilmore, but includesignificant supplementary data culled from the literature and importantcorrections to Mackey & Gilmore's V-band magnitude scale. Theprofiles of Galactic globular clusters are taken from Trager et al. Weaddress the question of which model fits each cluster best, finding inthe majority of cases that the Wilson models-which are spatially moreextended than King models but still include a finite, ``tidal'' cutoffin density-fit clusters of any age, in any galaxy, as well as or betterthan King models. Untruncated, asymptotic power laws often fit about aswell as Wilson models but can be significantly worse. We argue that theextended halos known to characterize many Magellanic Cloud clusters maybe examples of the generic envelope structure of self-gravitating starclusters, not just transient features associated strictly with youngage.

Blue Stragglers in Low-Luminosity Star Clusters
We examine the blue straggler populations of 13 low-luminosity(MVt>~-6) globular clusters and two old openclusters. These clusters test blue straggler formation in environmentsintermediate between higher luminosity (and usually higher density)clusters and the Galactic field. The anticorrelation between therelative frequency of blue stragglers(FBSS=NBSS/NHB) and cluster luminositycontinues to the lowest luminosity clusters, which have frequenciesmeeting or exceeding that of field stars. In addition, we find that theanticorrelation between straggler frequency and central densitydisappears for clusters with density less than about 300LV,solar pc-3, although this appears to be anartifact of the correlation between cluster luminosity and centraldensity. We argue on observational (wide, eccentric binaries containingblue stragglers in M67, and the existence of very bright stragglers inmost of the clusters in our sample) and theoretical grounds that stellarcollisions still produce a significant fraction of the blue stragglersin low-luminosity star clusters, due to the long-term survival of widebinaries.Based on observations with the NASA/ESA Hubble Space Telescope, obtainedat the Space Telescope Science Institute, which is operated by theAssociation of Universities for Research in Astronomy, Inc., under NASAcontract NAS 5-26555.

Abundance Anomalies and Rotational Evolution of Low-Mass Red Giants: A Maximal Mixing Approach
We use a fully self-consistent evolutionary code to follow therotational evolution of low-mass red giants, making a comprehensiveattempt to assess the role of rotationally induced mixing in thedevelopment of abundance anomalies in giants with a range of masses andmetallicities in stellar clusters and the field. We adopt a maximalmixing approach with reasonable initial conditions of angular momentumdistribution and main-sequence rotation rates as a function of stellartype. Unlike most previous work, we do not focus on the determination ofcombinations of mixing rate and depth that reproduce the data on aparticular stellar type. Instead, we concentrate on the more fundamentalproblem of the simultaneous reproduction of the patterns of CNO surfaceabundances in both Population I and Population II giants using the samephysics and models. We follow and discuss the essential physics ofrotational mixing in terms of the structural and angular momentumevolution along the red giant branch (RGB).A general result of all our models is that rotational mixing, althoughpresent in small amounts, is inefficient on the lower RGB independentlyof any inhibiting effect of μ-barriers. Therefore, the lack ofwell-mixed stars before the luminosity of the RGB bump in globularclusters and the field does not constitute unquestionable evidence forthe inhibition of mixing by μ-barriers. Instead, we argue that therapid disappearance of the RGB bump as soon as mixing is allowed topenetrate μ-barriers is what actually constitutes the first solidevidence of such inhibition.Maximal mixing models with differentially rotating envelopes are able toreproduce the 12C/13C data on M67 giants withinitial rotation rates adequate to their progenitors but fail to do sofor open clusters of larger turnoff mass and for metal-poor giants inthe field and globular clusters. Possible solutions are discussed. Ourfavored scenario is one in which the overall strength of canonical extramixing has been underestimated by existent derivations, but whichadditionally needs to be coupled with a much lower efficiency forrotational mixing among the rapidly rotating open cluster giants than inthe slowly rotating ones in the field and globular clusters. Wehypothesize that this last requirement is provided by the interactionbetween convection and rotation in the envelopes of giants, in the sensethat rapidly rotating stars would develop much shallower angularvelocity profiles in their envelopes than do slowly rotating stars.

Chemical Composition in the Globular Cluster M71 from Keck HIRES Spectra of Turnoff Stars
We have made observations with the Keck I telescope and HIRES at aresolution of ~45,000 of five nearly identical stars at the turnoff ofthe metal-rich globular cluster M71. We derive stellar parameters andabundances of several elements. Our mean Fe abundance,[Fe/H]=-0.80+/-0.02, is in excellent agreement with previous clusterdeterminations from both giants and near-turnoff stars. There is noclear evidence for any star-to-star abundance differences orcorrelations in our sample. Abundance ratios of the Fe peak elements(Cr, Ni) are similar to Fe. The turnoff stars in M71 have remarkablyconsistent enhancements of 0.2-0.3 dex in [Si/Fe], [Ca/Fe], and [Ti/Fe],like the red giants. Our [Mg/Fe] ratio is somewhat lower than thatsuggested by other studies. We compare our mean abundances for the fiveM71 stars with field stars of similar metallicity [Fe/H]: eight withhalo kinematics and 17 with disk kinematics. The abundances of theα-fusion products (Mg, Si, Ca, Ti) agree with both samples butseem a closer match to the disk stars. The Mg abundance in M71 is at thelower edge of the disk and halo samples. The neutron-capture elements, Yand Ba, are enhanced relative to solar in the M71 turnoff stars. Ourratio [Ba/Fe] is similar to that of the halo field stars but a factor of2 above that for the disk field stars. The important [Ba/Y] ratio issignificantly lower than M71 giant values; the precluster material mayhave been exposed to a higher neutron flux than the disk stars orself-enrichment has occurred subsequent to cluster star formation. TheNa content of the M71 turnoff stars is remarkably similar to that in thedisk field stars but more than a factor of 2 higher than the halo fieldstar sample. We find [Na/Fe]=+0.14+/-0.04 with a spread less than halfof that found in the red giants in M71. Excluding Mg, the lack ofintracluster α-element variations (turnoff vis-à-visgiants) suggests that the polluting material needed to explain theabundance patterns in M71 did not arise from explosive nucleosynthesisbut in a more traditional s-process environment such as AGB stars. Thedetermination of light s-peak abundances should reveal whether thispollution occurred before or after cluster formation.

The Effective Temperature Scale of FGK Stars. II. Teff:Color:[Fe/H] Calibrations
We present up-to-date metallicity-dependent temperature versus colorcalibrations for main-sequence and giant stars based on temperaturesderived with the infrared flux method (IRFM). Seventeen colors in thephotometric systems UBV, uvby, Vilnius, Geneva, RI(Cousins), DDO,Hipparcos-Tycho, and Two Micron All Sky Survey (2MASS) have beencalibrated. The spectral types covered by the calibrations range from F0to K5 (7000K>~Teff>~4000K) with some relationsextending below 4000 K or up to 8000 K. Most of the calibrations arevalid in the metallicity range -3.5>~[Fe/H]>~0.4, although some ofthem extend to as low as [Fe/H]~-4.0. All fits to the data have beenperformed with more than 100 stars; standard deviations range from 30 to120 K. Fits were carefully performed and corrected to eliminate thesmall systematic errors introduced by the calibration formulae. Tablesof colors as a function of Teff and [Fe/H] are provided. Thiswork is largely based on the study by A. Alonso and collaborators; thus,our relations do not significantly differ from theirs except for thevery metal-poor hot stars. From the calibrations, the temperatures of 44dwarf and giant stars with direct temperatures available are obtained.The comparison with direct temperatures confirms our finding in Paper Ithat the zero point of the IRFM temperature scale is in agreement, tothe 10 K level, with the absolute temperature scale (that based onstellar angular diameters) within the ranges of atmospheric parameterscovered by those 44 stars. The colors of the Sun are derived from thepresent IRFM Teff scale and they compare well with those offive solar analogs. It is shown that if the IRFM Teff scaleaccurately reproduces the temperatures of very metal-poor stars,systematic errors of the order of 200 K, introduced by the assumption of(V-K) being completely metallicity independent when studying verymetal-poor dwarf stars, are no longer acceptable. Comparisons with otherTeff scales, both empirical and theoretical, are also shownto be in reasonable agreement with our results, although it seems thatboth Kurucz and MARCS synthetic colors fail to predict the detailedmetallicity dependence, given that for [Fe/H]=-2.0, differences as highas approximately +/-200 K are found.

The Effective Temperature Scale of FGK Stars. I. Determination of Temperatures and Angular Diameters with the Infrared Flux Method
The infrared flux method (IRFM) has been applied to a sample of 135dwarf and 36 giant stars covering the following regions of theatmospheric parameter space: (1) the metal-rich ([Fe/H]>~0) end(consisting mostly of planet-hosting stars), (2) the cool(Teff<~5000 K) metal-poor (-1<~[Fe/H]<~-3) dwarfregion, and (3) the very metal-poor ([Fe/H]<~-2.5) end. These starswere especially selected to cover gaps in previous works onTeff versus color relations, particularly the IRFMTeff scale of A. Alonso and collaborators. Our IRFMimplementation was largely based on the Alonso et al. study (absoluteinfrared flux calibration, bolometric flux calibration, etc.) with theaim of extending the ranges of applicability of their Teffversus color calibrations. In addition, in order to improve the internalaccuracy of the IRFM Teff scale, we recomputed thetemperatures of almost all stars from the Alonso et al. work usingupdated input data. The updated temperatures do not significantly differfrom the original ones, with few exceptions, leaving the Teffscale of Alonso et al. mostly unchanged. Including the stars withupdated temperatures, a large sample of 580 dwarf and 470 giant stars(in the field and in clusters), which cover the ranges3600K<~Teff<~8000K and -4.0<~[Fe/H]<~+0.5, haveTeff homogeneously determined with the IRFM. The meanuncertainty of the temperatures derived is 75 K for dwarfs and 60 K forgiants, which is about 1.3% at solar temperature and 4500 K,respectively. It is shown that the IRFM temperatures are reliable in anabsolute scale given the consistency of the angular diameters resultingfrom the IRFM with those measured by long baseline interferometry, lunaroccultation, and transit observations. Using the measured angulardiameters and bolometric fluxes, a comparison is made between IRFM anddirect temperatures, which shows excellent agreement, with the meandifference being less than 10 K for giants and about 20 K for dwarfstars (the IRFM temperatures being larger in both cases). This resultwas obtained for giants in the ranges 3800K

A Comparison of Elemental Abundance Ratios in Globular Clusters, Field Stars, and Dwarf Spheroidal Galaxies
We have compiled a sample of globular clusters with high-quality stellarabundances from the literature to compare to the chemistries of stars inthe Galaxy and in dwarf spheroidal galaxies. Of the 45 globular clustersexamined, 29 also have kinematic information. Most of the globularclusters belong to the Galactic halo; however, a significant number havedisk kinematics or belong to the bulge. Focusing on the [α/Fe] andlight r-process element ratios, we find that most globular cluster starsmimic field stars of similar metallicities, and neither clearlyresembles the currently available stellar abundances in dwarf galaxies(including globular clusters in the Large Magellanic Cloud). Theexceptions to these general elemental ratio comparisons are alreadyknown in the literature, e.g., ω Centauri, Palomar 12, and Terzan7 associated with the Sagittarius remnant and Ruprecht 106, which has ahigh radial velocity and low [α/Fe] ratio. A few other globularclusters show more marginal peculiarities. The most notable one is thehalo cluster M68, which has a high galactocentric rotational velocity, aslightly younger age, and a unique [Si/Ti] ratio. The [Si/Ti] ratiosdecrease with increasing [Fe/H] at intermediate metallicities, which isconsistent with very massive stars playing a larger role in the earlychemical evolution of the Galaxy. The chemical similarities betweenglobular clusters and field stars with [Fe/H]<=-1.0 suggests a sharedchemical history in a well-mixed early Galaxy. The differences in thepublished chemistries of stars in the dwarf spheroidal galaxies suggestthat neither the globular clusters, halo stars, nor thick disk stars hadtheir origins in small isolated systems like the present-day Milky Waydwarf satellites.

C and N Abundances in Stars at the Base of the Red Giant Branch in M15
We present an analysis of a large sample of moderate-resolution Keck LowResolution Imaging Spectrometer spectra of subgiants and stars at thebase of the red giant branch (RGB) in the Galactic globular cluster (GC)M15 (NGC 7078), most within the range 16.5

Triggering and Feedback: The Relation between the H I Gas and the Starburst in the Dwarf Galaxy NGC 1569
As part of our study on the impact of violent star formation on theinterstellar medium (ISM) of dwarf galaxies, we report observations ofneutral atomic hydrogen (H I) in the starburst dwarf galaxy NGC 1569.High-resolution measurements with the Very Large Array (B, C, and Dconfiguration) are aimed at identifying morphological and kinematicalsignatures in H I caused by the starburst. Our kinematical data suggesta huge hole in the H I distribution, probably due to the large number ofsupernovae explosions in the center of the galaxy over the past 20 Myr.Investigating the large-scale H I structure, we confirm the existence ofa possible H I companion and a so-called H I bridge east of NGC 1569.Furthermore, we report the detection of additional low-intensity H Ihalo emission, which leads us to suggest a revised halo structure. Onthe basis of our new picture, we discuss the origin of the halo gas andpossible implications for the evolution of the starburst in NGC 1569.

Galactic Globular Cluster Relative Ages
We present accurate relative ages for a sample of 55 Galactic globularclusters. The ages have been obtained by measuring the differencebetween the horizontal branch and the turnoff in two internallyphotometrically homogeneous databases. The mutual consistency of the twodata sets has been assessed by comparing the ages of 16 globularclusters in common between the two databases. We have also investigatedthe consistency of our relative age determination within the recentstellar model framework. All clusters with [Fe/H]<-1.7 are found tobe old and coeval, with the possible exception of two objects, which aremarginally younger. The age dispersion for the metal-poor clusters is0.6 Gyr (rms), consistent with a null age dispersion.Intermediate-metallicity clusters (-1.7<[Fe/H]<-0.8) are onaverage 1.5 Gyr younger than the metal-poor ones, with an age dispersionof 1.0 Gyr (rms) and a total age range of ~3 Gyr. About 15% of theintermediate-metallicity clusters are coeval with the oldest clusters.All the clusters with [Fe/H]>-0.8 are ~1 Gyr younger than the mostmetal-poor ones, with a relatively small age dispersion, although themetal-rich sample is still too small to allow firmer conclusions. Thereis no correlation of the cluster age with the galactocentric distance.We briefly discuss the implication of these observational results forthe formation history of the Galaxy.Based on observations with the NASA/ESA Hubble Space Telescope, obtainedat the Space Telescope Science Institute, which is operated by theAssociation of Universities for Research in Astronomy, Inc., under NASAcontract NAS 5-26555, and on observations made at the European SouthernObservatory, La Silla, Chile, and with the Isaac Newton GroupTelescopes.

Outer Versus Inner Halo Globular Clusters: NGC 7492 Abundances
We have carried out a detailed abundance analysis for 21 elements in asample of four RGB stars in the outer halo globular cluster NGC 7492(RGC 25 kpc); we find [Fe/H]=-1.82 dex inferred from Fe Ilines (-1.79 from Fe II) using high-dispersion(R=λ/Δλ=35,000) spectra obtained with HIRES at theKeck Observatory. Most elements show no sign of star-to-star variationwithin our limited sample. We have, however, detected an anticorrelationbetween O and Na abundances similar to that seen in our previousanalyses of inner halo GCs as well as in studies of relatively nearbyGCs by others. We compare the abundance ratios in NGC 7492 with those wepreviously determined for the much closer old halo GCs M3 and M13. Aftermaking corrections for trends of abundance ratio with metallicitycharacteristic of halo stars, we find that for these three GCs, for eachof the elements in common we deduce identical abundance ratios withrespect to Fe to within the probable measurement uncertainties. Thus,the chemical history of the outer halo as exemplified by the metal-poorouter halo globular cluster NGC 7492 is indistinguishable from that ofthe inner halo, exemplified by M3 and M13, at least through the epoch offormation of these old globular clusters. This applies to the neutroncapture processes as well.Based in part on observations obtained at the W. M. Keck Observatory,which is operated jointly by the California Institute of Technology, theUniversity of California, and the National Aeronautics and SpaceAdministration.

Infrared Photometry of NGC 6791
We present deep JHK photometry of the old and metal-rich open clusterNGC 6791. The photometry reaches below the main-sequence turnoff toK~16.5 mag. We combine our photometry with that from Stetson et al. toprovide color-magnitude diagrams showing K versus J-K, K versus V-K, andV versus V-K. We study the slope of the red giant branch in the infraredbut find that it is not a useful metallicity indicator for the cluster,nor any metal-rich cluster that lacks a well-populated red giant branch,because it is not linear, as has often been assumed, in K versus J-K.The mean color of the red horizontal-branch/red clump stars provide anestimate of the cluster reddening, E(B-V)=0.14+/-0.04 mag for[Fe/H]=+0.4+/-0.1. The mean magnitudes of these stars also provide agood distance estimate, (m-M)0=13.07+/-0.04. Finally, we findthat the isochrones of Yi et al. provide optimal fits in V versus B-Vand V-K and K versus J-K and V-K for such values if [Fe/H] lies between+0.3 and +0.5 (with a slight preference for +0.5) and ages between 9 Gyr([Fe/H]=+0.3) and 7.5 Gyr ([Fe/H]=+0.5).Based on observations made with the Mayall 4 m Telescope of the NationalOptical Astronomy Observatory.

Добавить новую статью


Внешние ссылки

  • - Внешних ссылок не найдено -
Добавить внешнюю ссылку


Группы:


Наблюдательные данные и астрометрия

Созвездие:Стрела
Прямое восхождение:19h53m48.00s
Склонение:+18°47'00.0"
Видимая звёздная величина:8.3

Каталоги и обозначения:
Собственные имена
MessierM 71
NGC 2000.0NGC 6838

→ Запросить дополнительные каталоги и обозначения от VizieR