Главная     Введение     Новые рисунки     Рисунок дня     Blog New!     Войти  

99 Tau


Оглавление

Изображения

Загрузить ваше изображение

DSS Images   Other Images


Публикации по объекту

CaII K Emission-Line Asymmetry among Red Giants Detected by the ROSAT Satellite
Spectra of the Ca II H and K lines are reported for a number of fieldgiants from which soft X-ray emission was detected by the ROSATsatellite. Several of these stars are RS CVn systems and exhibit verystrong Ca II emission. The majority of the noninteracting giants in thesample have MV>-2.0, as determined from Hipparcosparallaxes, and spectral types earlier than K3. The Ca II Kemission-line profile for these stars is most often double-peaked andasymmetric, with the short-wavelength peak being stronger than thelongward peak. This asymmetry is in the same sense as for the integrateddisk of the Sun. The X-ray and Ca II K-line data indicate that giants ofspectral types G and early K have coronae and chromospheres seeminglyanalogous to those of the Sun. Four M giants that were detected by ROSATwere also observed. Their Ca II emission spectra show asymmetries inwhich the violet wing is weaker than the red wing, a phenomenon that istypical of M giants in general and indicative of mass outflows in theirchromospheres. The majority of these M giants, but not all, are known tobe in binary systems, so it is possible that the X-ray emission for atleast some of them may come from a companion. Alternatively, some or allof these M giants may be examples of hybrid stars.

Dust around First-Ascent Red Giants
We examine models for the physical conditions in the dust envelopesaround the closest and most conspicuous examples of luminosity class IIIred giants with infrared excesses such as delta And. (1) It has beenpreviously suggested that the dust is sporadically ejected from thestars, but for most such stars, this model seems unlikely. (2) Anotherpossibility is that in some cases we might be witnessing emission frominterstellar dust that happens to be near the star, a ``cirrus hotspot.'' Since 70% of the red giants with infrared excesses lie within100 pc of the Galactic plane where this phenomenon must sometimes occur,many of the excesses might be explained by this effect. However, adifficulty with this model for at least a few bright sources is that ifthe clouds have a uniform density, we expect sizes at 60 μm that areabout a factor of 10 larger than found for the best studied examples. Itseems likely that some class III giants do possess circumstellar dust.(3) The inferred mass of dust around some class III red giants is largerthan 10^26 g, more matter than would be expected when a Vega-type starevolves off the main sequence. Because the dust is inferred to be morethan 100 AU from the star, we hypothesize that the large inferred dustmasses is the result of the disintegration of comets. This model can betested by using the Space Infrared Telescope Facility to measure the 60μm sizes.

Late-type giants with infrared excess. I. Lithium abundances
de la Reza et al. (1997) suggested that all K giants become Li-rich fora short time. During this period the giants are associated with anexpanding thin circumstellar shell supposedly triggered by an abruptinternal mixing mechanism resulting in the surface Li enrichment. Inorder to test this hypothesis twenty nine late-type giants withfar-infrared excess from the list of Zuckerman et al. (1995) wereobserved in the Li-region to study the connection between thecircumstellar shells and Li abundance. Eight giants have been found tohave log epsilon (Li) > 1.0. In the remaining giants the Li abundanceis found to be much lower. HD 219025 is found to be a rapidly rotating(projected rotational velocity of 23 +/-3 km s(-1) ), dusty and Li-rich(log epsilon (Li) = 3.0+/-0.2) K giant. Absolute magnitude derived fromthe Hipparcos parallax reveals that it is a giant and not apre-main-sequence star. The evolutionary status of HD 219025 seems to besimilar to that of HDE 233517 which is also a rapidly rotating, dustyand Li-rich K giant. The Hipparcos parallaxes of all the well studiedLi-rich K giants show that most of them are brighter than the ``clump"giants. Their position in the H-R diagram indicates that they have gonethrough mixing and the initial abundance of Li is not preserved. Thereseems to be no correlations between Li abundances, rotational velocitiesand carbon isotope ratios. The only satisfactory explanation for theoverabundance of lithium in these giants is the creation of Li by theextra deep mixing and the associated ``cool bottom processing". Based onobservations obtained at the European Southern Observatory, La Silla,Chile, and at the Observatoire de Haute Provence, France.

A Search for Lithium-Rich Giants among Stars with Infrared Excesses
The unusual nature of the single, rapidly rotating, lithium-rich K giantHDE 233517, which is currently undergoing significant mass loss,prompted a search for giants with similar properties. High-dispersionspectroscopic observations were obtained of HD 219025, a knownlithium-rich infrared-excess giant, plus 39 stars from a list of G and Kgiants with excess far-infrared emission. The projected rotationalvelocities of the vast majority of infrared-excess giants appear to besimilar to those of normal G and K giants. Six giants have lithiumabundances at or above theoretical upper envelope values. The percentageof such stars in the sample of 39 infrared-excess giants is similar tothat of normal giants. The three giants with the largest lithiumabundances have previously been discovered. None of the sample of 39giants have an Hα line similar to the broadened and veryasymmetric line of HDE 233517. The star with optical properties mostsimilar to HDE 233517 is HD 219025.

The ROSAT all-sky survey catalogue of optically bright late-type giants and supergiants
We present X-ray data for all late-type (A, F, G, K, M) giants andsupergiants (luminosity classes I to III-IV) listed in the Bright StarCatalogue that have been detected in the ROSAT all-sky survey.Altogether, our catalogue contains 450 entries of X-ray emitting evolvedlate-type stars, which corresponds to an average detection rate of about11.7 percent. The selection of the sample stars, the data analysis, thecriteria for an accepted match between star and X-ray source, and thedetermination of X-ray fluxes are described. Catalogue only available atCDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

21-cm Line Observations of Galaxies in the Zone of Avoidance
We present HI 21-cm line observations of 543 galaxies at low galacticlatitude in the Galactic Anticenter region of the Zone of Avoidance(4(h) <=alpha <= 8(h) , 0arcdeg <=delta <= 37arcdeg ). Thesample comprises 147 catalogued objects (from UGC, CGCG, MCG, and IRAS)still missing a redshift measurement and a list of 369 objects selectedfrom an extensive optical compilation of galaxy candidates in this area.The spectra were acquired using the 305-m Arecibo telescope and cover avelocity range from -350 to +13800 km s(-1) at a resolution of about 16km s(-1) . 196 galaxies were detected, 59 of the catalogued ones and 137from the optical compilation. The HI derived properties are presented,as is a discussion regarding the redshift distribution in this region.Our data seems to be consistent with a link across the Zone of Avoidancebetween the Pisces-Perseus supercluster and Abell 569.

Giants with infrared excess.
We have correlated optical and infrared catalogs in order to extract alarge sample of luminosity class III stars with known infrared fluxdensities. For a non-negligible fraction of G and K giants, afar-infrared excess emission was found, starting beyond 25μm. Anexplanation in terms of present-day mass loss thus becomes unlikely,since the dust should then be warmer and the excess emission less far inthe infrared. We believe that the far-infrared excesses of theseobjects, most likely first-ascent giants, are related to the Vegaphenomenon. The dusty disks around these stars, gradually cooled downduring their main-sequence phase, could be reheated once the star leavesthe main sequence and enters the luminous post-main-sequence phase. Thefairly large sample we constructed enables us to derive an estimationfor the occurrence of excesses. This fraction of G or K giants withfar-infrared excess appears to be distinctly smaller than amongmain-sequence stars. Since the higher radiation field of giants couldlead to a larger evaporation rate of the circumstellar debris, this factdoes not conflict with our hypothesis.

The photoelectric astrolabe catalogue of Yunnan Observatory (YPAC).
The positions of 53 FK5, 70 FK5 Extension and 486 GC stars are given forthe equator and equinox J2000.0 and for the mean observation epoch ofeach star. They are determined with the photoelectric astrolabe ofYunnan Observatory. The internal mean errors in right ascension anddeclination are +/- 0.046" and +/- 0.059", respectively. The meanobservation epoch is 1989.51.

Luminosity Class III Stars with Excess Far-Infrared Emission
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995ApJ...446L..79Z&db_key=AST

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

Mesures de vitesses radiales. VII. Accompagnement AU sol DU programme d'observation DU satellite Hipparcos. Radial velocities. VII. Ground based measurements for Hipparcos.
We publish 734 radial velocities of stars distributed in 28 fields of4x4deg. We continue the PPO series (Fehrenbach et al. 1987; Duflot etal. 1990 and 1992), using the Fehrenbach objective prism method.

Evolved GK stars near the Sun. 2: The young disk population
From a sample of nearly 2000 GK giants a group of young disk stars withwell determined space motions has been selected. The zero point of theluminosity calibrations, both from the ultraviolet flux (modifiedStroemgren system) and that in the region of 4200 to 4900 A (DDOsystem), show a discontinuity of about a half magnitude at the border ofthe young disk and old disk domains. The population separation is basedon the space velocity components, which are also an age discriminant,with the population interface near 2 x 109 yr, based onmodels with convective overshoot at the core. This age corresponds togiant masses near 1.7 solar mass, near the critical mass separating theyoung stars that do not burn helium in degenerate cores from older starsthat do. Ten percent of both populations show CN anomalies in that thederived value of P(Fe/H) from CN (Cm) and fromFe(M1) differ by more than 0.1 dex and the weak and strong CNstars occur equally in the old disk but the weak CN stars predominate inthe young disk. Peculiar stars, where flux distortions affect theluminosity calibrations, are of the CH+(Ba II) and CH-(weak G band)variety and represent less than 1% of the stars in both populations. Theyoung disk giants are restricted to ages greater than about109 yr, because younger stars are bright giants orsupergiants (luminosity class 2 or 1), and younger than about 2 x109 yr, because the old disk-young disk boundary occurs near1.7 solar mass. The distribution of heavy element abundances, P(Fe/H),for young disk giants is both more limited in range (+/- 0.4 dex) and isskewed toward higher abundances, compared with the nearly normaldistribution for old disk giants. The distribution of (U,V) velocityvectors gives (U,V,W) and their dispersions = (+17.6 +/- 18.4, -14.8 +/-8.4, -6.9 +/- 13.0) and (+3.6 +/- 38.4, -20.7 +/- 27.5, -6.7 +/-17.3)km/s for young and old disk giants, respectively.

Probable open clusters NGC 1750 and NGC 1758 behind the Taurus dark clouds
The area of 2.5 x 2.5 deg in the direction of the Taurus dark cloudscontaining stellar groupings NGC 1746, NGC 1750, and NGC 1758 isinvestigated in the Vilnius photometric system. Magnitudes V, colorindices, color excesses, interstellar extinctions, and distances aredetermined for 116 stars, some of which are as faint as V = 13. It isconcluded that NGC 1746 is probably not a cluster. Other two groupingsof stars, NGC 1750 and NGC 1758, if real, may be open clusters at 510and 680 pc distances. Interstellar reddenings E(B-V) of both groups are0.42 and 0.37 mag, respectively. The distance of the Taurus dark cloudsin the area is found to be 175 pc, i.e. by 45 pc larger than in otherdirections farther to the south from the galactic equator.

Large and Kinematically Unbiased Samples of G- and K-Type Stars. III. Evolved Young Disk Stars in the Bright Star Sample
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1989PASP..101...54E&db_key=AST

Large and kinematically unbiased samples of G- and K-type stars. II - Observations of evolved stars in the Bright Star sample. III - Evolved young disk stars in the Bright Star sample
Four color and RI observations were obtained for a large sample ofG-type and K-type stars in the Bright Star Catalogue. Data are firstpresented for 110 evolved stars. Photometry of evolved young diskpopulation stars have then been calibrated for luminosity, reddening,and metallicity on the basis of results for members of the Hyades andSirius superclusters. New DDO results are given for 120 stars.

Narrow-band photometry of late-type stars. II
This paper presents extensive narrow-band photometry in the Uppsalasystem supplementing earlier published mesurements so that data now areavailable for all late-type stars brighter than V = 6.05 and a number ofgalactic cluster members. Numerous UBV and BV measurements are alsopublished. The data are used to determine relations for the predictionof UBV intrinsic colors for late-type stars from the narrow-bandmeasurements. The main purpose of the data is to constitute the basisfor the determination of solar-neighborhood space densities of late-typestars, mainly giants of different kinds; these space densities will becombined with narrow-band data for fainter stars in the north Galacticpole region to yield the decrease of space density with distance fromthe galactic plane for many kinds of late-type stars.

An IRAS survey of IR excesses in G-type stars
The IRAS Point Source Catalog has been searched for infrared sourcesassociated with G-type stars. Of the 3803 IRAS sources identified inthis way, 28 were found to have enhanced emission at lambda greater than25 microns characteristic of circumstellar material. The majority of theIR-excess stars were supergiants whose inferred mass loss rates werefound to be comparable to those of red giants. One of the stars, IRAS11059-7721, is a G main-sequence star whose circumstellar medium (CSM)has 20,000 times the optical depth of Vega's CSM. The physicalcharacteristics of the circumstellar emission for this sample aredescribed, and several scenarios for its existence are examined in lightof the IRAS data.

Catalog of Indidual Radial Velocities, 0h-12h, Measured by Astronomers of the Mount Wilson Observatory
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1970ApJS...19..387A&db_key=AST

- and Broad-Band Photometry of Red Stars. Northern Giants
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1967ApJS...14..307E&db_key=AST

Добавить новую статью


Внешние ссылки

  • - Внешних ссылок не найдено -
Добавить внешнюю ссылку


Группы:


Наблюдательные данные и астрометрия

Созвездие:Телец
Прямое восхождение:04h57m48.70s
Склонение:+23°56'55.0"
Видимая звёздная величина:5.79
Расстояние:144.509 парсек
Собственное движение RA:2.5
Собственное движение Dec:-12
B-T magnitude:7.21
V-T magnitude:5.928

Каталоги и обозначения:
Собственные имена
Flamsteed99 Tau
HD 1989HD 31553
TYCHO-2 2000TYC 1832-2497-1
USNO-A2.0USNO-A2 1125-01936553
BSC 1991HR 1586
HIPHIP 23068

→ Запросить дополнительные каталоги и обозначения от VizieR