Главная     Введение     Новые рисунки     Рисунок дня     Blog New!     Войти  

HD 200800


Оглавление

Изображения

Загрузить ваше изображение

DSS Images   Other Images


Публикации по объекту

Spitzer IRS Spectroscopy of IRAS-discovered Debris Disks
We have obtained Spitzer Space Telescope Infrared Spectrograph (IRS)5.5-35 μm spectra of 59 main-sequence stars that possess IRAS 60μm excess. The spectra of five objects possess spectral features thatare well-modeled using micron-sized grains and silicates withcrystalline mass fractions 0%-80%, consistent with T Tauri and HerbigAeBe stars. With the exception of η Crv, these objects are youngwith ages <=50 Myr. Our fits require the presence of a cool blackbodycontinuum, Tgr=80-200 K, in addition to hot, amorphous, andcrystalline silicates, Tgr=290-600 K, suggesting thatmultiple parent body belts are present in some debris disks, analogousto the asteroid and Kuiper belts in our solar system. The spectra forthe majority of objects are featureless, suggesting that the emittinggrains probably have radii a>10 μm. We have modeled the excesscontinua using a continuous disk with a uniform surface densitydistribution, expected if Poynting-Robertson and stellar wind drag arethe dominant grain removal processes, and using a single-temperatureblackbody, expected if the dust is located in a narrow ring around thestar. The IRS spectra of many objects are better modeled with asingle-temperature blackbody, suggesting that the disks possess innerholes. The distribution of grain temperatures, based on our blackbodyfits, peaks at Tgr=110-120 K. Since the timescale for icesublimation of micron-sized grains with Tgr>110 K is afraction of a Myr, the lack of warmer material may be explained if thegrains are icy. If planets dynamically clear the central portions ofdebris disks, then the frequency of planets around other stars isprobably high. We estimate that the majority of debris disk systemspossess parent body masses, MPB<1 M⊕. Thelow inferred parent body masses suggest that planet formation is anefficient process.Based on observations with the NASA Spitzer Space Telescope, which isoperated by the California Institute of Technology for NASA.

Optical, infrared and millimetre-wave properties of Vega-like systems - IV. Observations of a new sample of candidate Vega-like sources
Photometric observations at optical and near-infrared wavelengths arepresented for members of a new sample of candidate Vega-like systems, ormain sequence stars with excess infrared emission due to circumstellardust. The observations are combined with IRAS fluxes to define thespectral energy distributions of the sources. Most of the sources showonly photospheric emission at near-IR wavelengths, indicating a lack ofhot (~1000K) dust. Mid-infrared spectra are presented for four sourcesfrom the sample. One of them, HD 150193, shows strong silicate emission,while another, HD 176363, was not detected. The spectra of two starsfrom our previous sample of Vega-like sources both show UIR-bandemission, attributed to hydrocarbon materials. Detailed comparisons ofthe optical and IRAS positions suggest that in some cases the IRASsource is not physically associated with the visible star. Alternativeassociations are suggested for several of these sources. Fractionalexcess luminosities are derived from the observed spectral energydistributions. The values found are comparable to those measuredpreviously for other Vega-like sources.

Candidate Main-Sequence Stars with Debris Disks: A New Sample of Vega-like Sources
Vega-like sources are main-sequence stars that exhibit IR fluxes inexcess of expectations for stellar photospheres, most likely due toreradiation of stellar emission intercepted by orbiting dust grains. Wehave identified a large sample of main-sequence stars with possibleexcess IR radiation by cross-correlating the Michigan Catalog ofTwo-dimensional Spectral Types for the HD Stars with the IRAS FaintSource Survey Catalog. Some 60 of these Vega-like sources were not foundduring previous surveys of the IRAS database, the majority of whichemployed the lower sensitivity Point Source Catalog. Here, we providedetails of our search strategy, together with a preliminary examinationof the full sample of Vega-like sources.

Добавить новую статью


Внешние ссылки

  • - Внешних ссылок не найдено -
Добавить внешнюю ссылку


Группы:


Наблюдательные данные и астрометрия

Созвездие:Павлин
Прямое восхождение:21h09m05.50s
Склонение:-65°47'56.1"
Видимая звёздная величина:7.53
Расстояние:126.904 парсек
Собственное движение RA:21.7
Собственное движение Dec:-41.5
B-T magnitude:7.705
V-T magnitude:7.545

Каталоги и обозначения:
Собственные имена
HD 1989HD 200800
TYCHO-2 2000TYC 9114-47-1
USNO-A2.0USNO-A2 0225-31038391
HIPHIP 104411

→ Запросить дополнительные каталоги и обозначения от VizieR