Home     Getting Started     New Pictures     Picture of the Day     Blog New!     Login  

δ Ori (HEITOR)


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

A multiwavelength investigation of the temperature of the cold neutral medium
We present measurements of the HI spin temperatures (Ts) ofthe cold neutral medium (CNM) towards radio sources that are closelyaligned with stars for which published H2 ortho-paratemperatures (T01) are available from ultraviolet (UV)observations. Our sample consists of 18 radio sources close to 16 nearbystars. The transverse separation of the lines of sight of thecorresponding UV and radio observations varies from 0.1 to 12.0 pc atthe distance of the star. The UV measurements do not have velocityinformation, so we use the velocities of low ionization species (e.g.NaI/KI/CI) observed towards these same stars to make a plausibleidentification of the CNM corresponding to the H2 absorption.We then find that T01 and Ts match withinobservational uncertainties for lines of sight with H2 columndensity above 1015.8cm-2, but deviate from eachother below this threshold. This is consistent with the expectation thatin the CNM Ts tracks the kinetic temperature due tocollisions and that T01 is driven towards the kinetictemperature by proton exchange reactions.

Variations in D/H and D/O from New Far Ultraviolet Spectroscopic Explorer Observations
We use data obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) to determine the interstellar abundances of D I, N I, O I, Fe II,and H2 along the sight lines to WD 1034+001, BD +39 3226, andTD1 32709. Our main focus is on determining the D/H, N/H, O/H, and D/Oratios along these sight lines, with logN(H)>20.0, that probe gaswell outside of the Local Bubble. Hubble Space Telescope (HST) andInternational Ultraviolet Explorer (IUE) archival data are used todetermine the H I column densities along the WD 1034+001 and TD1 32709sight lines, respectively. For BD +39 3226, a previously published N(HI) is used. We find(D/H)×105=2.14+0.53-0.45,1.17+0.31-0.25, and1.86+0.53-0.43 and(D/O)×102=6.31+1.79-1.38,5.62+1.61-1.31, and7.59+2.17-1.76 for the WD 1034+001, BD +39 3226,and TD1 32709 sight lines, respectively (all 1 σ). The scatter inthese three D/H ratios exemplifies the scatter that has been found byother authors for sight lines with column densities in the range19.2

The Homogeneity of Interstellar Elemental Abundances in the Galactic Disk
We present interstellar elemental abundance measurements derived fromSpace Telescope Imaging Spectrograph echelle observations of 47 sightlines extending up to 6.5 kpc through the Galactic disk. These pathsprobe a variety of interstellar environments, covering ranges of nearly4 orders of magnitude in molecular hydrogen fraction f(H2)and more than 2 in mean hydrogen sight-line density. Coupling the current data with Goddard HighResolution Spectrograph data from 17 additional sight lines and thecorresponding Far Ultraviolet Spectroscopic Explorer and Copernicusobservations of H2 absorption features, we explore magnesium,phosphorus, manganese, nickel, copper, and germanium gas-phase abundancevariations as a function of : density-dependentdepletion is noted for each element, consistent with a smooth transitionbetween two abundance plateaus identified with warm and cold neutralinterstellar medium depletion levels. The observed scatter with respectto an analytic description of these transitions implies that totalelemental abundances are homogeneous on length scales of hundreds ofparsecs, to the limits of abundance measurement uncertainty. Theprobable upper limit we determine for intrinsic variability at any is 0.04 dex, aside from an apparent 0.10 dexdeficit in copper (and oxygen) abundances within 800 pc of the Sun.Magnesium dust abundances are shown to scale with the amount of siliconin dust, and in combination with a similar relationship between iron andsilicon, these data appear to favor the young F and G star values ofSofia & Meyer as an elemental abundance standard for the Galaxy.Based on observations with the NASA/ESA.

The Discordance of Mass-Loss Estimates for Galactic O-Type Stars
We have determined accurate values of the product of the mass-loss rateand the ion fraction of P+4, M˙q(P+4), for asample of 40 Galactic O-type stars by fitting stellar wind profiles toobservations of the P V resonance doublet obtained with FUSE, ORFEUSBEFS, and Copernicus. When P+4 is the dominant ion in thewind [i.e., 0.5<~q(P+4)<=1], M˙q(P+4)approximates the mass-loss rate to within a factor of <~2. Theorypredicts that P+4 is the dominant ion in the winds of O7-O9.7stars, although an empirical estimator suggests that the range O4-O7 maybe more appropriate. However, we find that the mass-loss rates obtainedfrom P V wind profiles are systematically smaller than those obtainedfrom fits to Hα emission profiles or radio free-free emission bymedian factors of ~130 (if P+4 is dominant between O7 andO9.7) or ~20 (if P+4 is dominant between O4 and O7). Thesediscordant measurements can be reconciled if the winds of O stars in therelevant temperature range are strongly clumped on small spatial scales.We use a simplified two-component model to investigate the volumefilling factors of the denser regions. This clumping implies thatmass-loss rates determined from ``ρ2'' diagnostics havebeen systematically overestimated by factors of 10 or more, at least fora subset of O stars. Reductions in the mass-loss rates of this size haveimportant implications for the evolution of massive stars andquantitative estimates of the feedback that hot-star winds provide totheir interstellar environments.

Winds from OB Stars: A Two-Component Scenario?
X-ray spectroscopy of several OB stars with massive winds has revealedthat many X-ray line profiles exhibit unexpectedly small blueshifts andare almost symmetric. Moreover, the hottest X-ray lines appear tooriginate closest to the star. These properties appear to beinconsistent with the standard model of X-rays originating in shockedmaterial in line-driven spherically symmetric winds. Here we raise thequestion, can the X-ray line data be understood in terms of atwo-component wind? We consider a scenario in which one component of thewind is a standard line-driven wind that emerges from a broad range oflatitudes centered on the equator. The second component of the windemerges from magnetically active regions in extensive polar caps. Theexistence of such polar caps is suggested by a recent model of dynamoaction in massive stars. We describe how the two-component model isconsistent with a variety of observational properties of OB star winds.

Can single O stars produce non-thermal radio emission?
We present a model for the non-thermal radio emission from presumablysingle O stars, in terms of synchrotron emission from relativisticelectrons accelerated in wind-embedded shocks. These shocks areassociated with an unstable, chaotic wind. The main improvement withrespect to earlier models is the inclusion of the radial dependence ofthe shock velocity jump and compression ratio, based on one-dimensionaltime-dependent hydrodynamical simulations. The decrease of the velocityjump and the compression ratio as a function of radius produces arapidly decreasing synchrotron emissivity. This effectively prohibitsthe models from reproducing the spectral shape of the observednon-thermal radio emission. We investigate a number of “escaperoutes” by which the hydrodynamical predictions might bereconciled with the radio observations. We find that the observedspectral shape can be reproduced by a slower decline of the compressionratio and the velocity jump, by the re-acceleration of electrons in manyshocks or by adopting a lower mass-loss rate. However, none of theseescape routes are physically plausible. In particular, re-accelerationby feeding an electron distribution through a number of shocks, is incontradiction with current hydrodynamical simulations. Thesehydrodynamical simulations have their limitations, most notably the useof one-dimensionality. At present, it is not feasible to performtwo-dimensional simulations of the wind out to the distances requiredfor synchrotron-emission models. Based on the current hydrodynamicmodels, we suspect that the observed non-thermal radio emission from Ostars cannot be explained by wind-embedded shocks associated with theinstability of the line-driving mechanism. The most likely alternativemechanism is synchrotron emission from colliding winds. That would implythat all O stars with non-thermal radio emission should be members ofbinary or multiple systems.

Evolution of interacting binaries with a B type primary at birth
We revisited the analytical expression for the mass ratio distributionfor non-evolved binaries with a B type primary. Selection effectsgoverning the observations were taken into account in order to comparetheory with observations. Theory was optimized so as to fit best withthe observed q-distribution of SB1s and SB2s. The accuracy of thistheoretical mass ratio distribution function is severely hindered by theuncertainties on the observations. We present a library of evolutionarycomputations for binaries with a B type primary at birth. Some liberalcomputations including loss of mass and angular momentum during binaryevolution are added to an extensive grid of conservative calculations.Our computations are compared statistically to the observeddistributions of orbital periods and mass ratios of Algols. ConservativeRoche Lobe Over Flow (RLOF) reproduces the observed distribution oforbital periods but fails to explain the observed mass ratios in therange q in [0.4-1]. In order to obtain a better fit the binaries have tolose a significant amount of matter, without losing much angularmomentum.

Prospects for brown dwarf and extrasolar planet research with the GTC and the LMT
The topic of brown dwarf and extrasolar planet research with the GTC andthe LMT was discussed during a half day workshop at Universidad NacionalAutonoma de Mexico. This paper summarizes the contributions presented atthat Workshop plus additional contributions from members of the SpanishNetwork for extrasolar planets. Specific observational projects, whichcan be carried out with the planned instruments for the GTC, includingfirst light ones, are explained in some detail. These projects are thefollowing: our coolest neighbors, brown dwarfs in wide binaries, browndwarfs and planetary mass objects in Orion, follow-up of transitingextrasolar planets and verification of planet candidates, the search forultracool companions to nearby stars, brown dwarf binaries and disksaround brown dwarfs.

Atlas and Catalog of Dark Clouds Based on Digitized Sky Survey I
We present a quantitative atlas and catalog of dark clouds derived byusing the optical database ``Digitized Sky Survey I''. Applying atraditional star-count technique to 1043 plates contained in thedatabase, we produced an AV map covering the entire region inthe galactic latitude range |b| ≤ 40°. The map was drawn at twodifferent angular resolutions of 6' and 18', and is shown in detail in aseries of figures in this paper. Based on the AV map, weidentified 2448 dark clouds and 2841 clumps located inside them. Somephysical parameters, such as the position, extent, and opticalextinction, were measured for each of the clouds and clumps. We alsosearched for counterparts among already known dark clouds in theliterature. The catalog of dark clouds presented in this paper lists thecloud parameters as well as the counterparts.

Evolution of X-ray emission from young massive star clusters
The evolution of X-ray emission from young massive star clusters ismodelled, taking into account the emission from the stars as well asfrom the cluster wind. It is shown that the level and character of thesoft (0.2-10 keV) X-ray emission change drastically with cluster age andare tightly linked with stellar evolution. Using the modern X-rayobservations of massive stars, we show that the correlation betweenbolometric and X-ray luminosity known for single O stars also holds forO+O and (Wolf-Rayet) WR+O binaries. The diffuse emission originates fromthe cluster wind heated by the kinetic energy of stellar winds andsupernova explosions. To model the evolution of the cluster wind, themass and energy yields from a population synthesis are used as input toa hydrodynamic model. It is shown that in a very young cluster theemission from the cluster wind is low. When the cluster evolves, WRstars are formed. Their strong stellar winds power an increasing X-rayemission of the cluster wind. Subsequent supernova explosions pump thelevel of diffuse emission even higher. Clusters at this evolutionarystage may have no X-ray-bright stellar point sources, but a relativelyhigh level of diffuse emission. A supernova remnant may become adominant X-ray source, but only for a short time interval of a fewthousand years. We retrieve and analyse Chandra and XMM-Newtonobservations of six massive star clusters located in the LargeMagellanic Cloud (LMC). Our model reproduces the observed diffuse andpoint-source emission from these LMC clusters, as well as from theGalactic clusters Arches, Quintuplet and NGC 3603.

The epoch of the constellations on the Farnese Atlas and their origin in Hipparchus's lost catalogue
Not Available

FUSE Determination of a Low Deuterium Abundance along an Extended Sight Line in the Galactic Disk
We present a study of the deuterium abundance along the extended sightline toward HD 90087 with the Far Ultraviolet Spectroscopic Explorer(FUSE). HD 90087 is a O9.5 III star located in the Galactic disk at adistance of ~2.7 kpc away from the Sun. Both in terms of distance andcolumn densities, HD 90087 has the longest and densest sight lineobserved in the Galactic disk for which a deuterium abundance has beenmeasured from ultraviolet absorption lines so far. Because manyinterstellar clouds are probed along this sight line, possiblevariations in the properties of individual clouds should be averagedout. This would yield a deuterium abundance that is characteristic ofthe interstellar medium on scales larger than the Local Bubble. The FUSEspectra of HD 90087 show numerous blended interstellar and stellarfeatures. We have measured interstellar column densities of neutralatoms, ions, and molecules by simultaneously fitting the interstellarabsorption lines detected in the different FUSE channels. As far aspossible, saturated lines were excluded from the fits in order tominimize possible systematic errors. IUE (International UltravioletExplorer) archival data are also used to measure neutral hydrogen. Wereport D/O=(1.7+/-0.7)×10-2 andD/H=(9.8+/-3.8)×10-6 (2 σ). Our new resultsconfirm that the gas-phase deuterium abundance in the distantinterstellar medium is significantly lower than the one measured withinthe Local Bubble. We supplement our study with a revision of the oxygenabundance toward Feige 110, a moderately distant (~200 pc) sdOB star,located ~150 pc below the Galactic plane. Excluding saturated lines fromthe fits of the FUSE spectra is critical; this led us to derive an O Icolumn density about 2 times larger than the one previously reported forFeige 110. The corresponding updated D/O ratio on this sight line isD/O=(2.6+/-1.0)×10-2 (2 σ), which is lower thanthe one measured within the Local Bubble. The data set available nowoutside the Local Bubble, which is based primarily on FUSE measurements,shows a contrast between the constancy of D/O and the variability ofD/H. As oxygen is considered to be a good proxy for hydrogen within theinterstellar medium, this discrepancy is puzzling.

Bulk Velocities, Chemical Composition, and Ionization Structure of the X-Ray Shocks in WR 140 near Periastron as Revealed by the Chandra Gratings
The Wolf-Rayet WC7+O4-5 binary WR 140 went through the periastronpassage of its 8 yr eccentric binary orbit in early 2001 as the twostars made their closest approach. Both stars have powerful supersonicstellar winds that crash into each other between the stars to produceX-rays. Chandra grating observations were made when the X-rays were attheir peak, making WR 140 the brightest hot-star X-ray source in the skyand giving the opportunity to study the velocity profiles of lines, allof which were resolved and blueshifted before periastron. In the generalcontext of shock physics, the measurements constrain the flow of hot gasand where different ions were made. The brightness of lines relative tothe strong continuum in conjunction with plasma models gives interimabundance estimates for eight different elements in WC-type materialincluding an Ne/S ratio in good agreement with earlier long-wavelengthmeasurements. The lower velocity widths of cool ions imply a plasma thatwas not in equilibrium, probably due to the collisionless nature of theshock transitions and the slow character of both the postshock energyexchange between ions and electrons and subsequent ionization. Electronheat conduction into fast-moving preshock gas was absent, probablysuppressed by the magnetic field involved in WR 140's synchrotronemission. After periastron, the spectrum was weaker due mainly toabsorption by cool Wolf-Rayet star material.

Chandra HETGS Multiphase Spectroscopy of the Young Magnetic O Star θ1 Orionis C
We report on four Chandra grating observations of the oblique magneticrotator θ1 Ori C (O5.5 V), covering a wide range ofviewing angles with respect to the star's 1060 G dipole magnetic field.We employ line-width and centroid analyses to study the dynamics of theX-ray-emitting plasma in the circumstellar environment, as well asline-ratio diagnostics to constrain the spatial location, and globalspectral modeling to constrain the temperature distribution andabundances of the very hot plasma. We investigate these diagnostics as afunction of viewing angle and analyze them in conjunction with new MHDsimulations of the magnetically channeled wind shock mechanism onθ1 Ori C. This model fits all the data surprisinglywell, predicting the temperature, luminosity, and occultation of theX-ray-emitting plasma with rotation phase.

Ion-by-Ion Differential Emission Measure Determination of Collisionally Ionized Plasma. II. Application to Hot Stars
In a previous paper we have described a technique to derive constraintson the differential emission measure (DEM) distribution, a measure ofthe temperature distribution, of collisionally ionized hot plasmas fromtheir X-ray emission line spectra. We apply this technique to theChandra HETGS spectra of all of the nine hot stars available to us atthe time that this project was initiated. We find that DEM distributionsof six of the seven O stars in our sample are very similar, but thatθ1 Ori C has an X-ray spectrum characterized by highertemperatures. The DEM distributions of both of the B stars in our samplehave lower magnitudes than those of the O stars, and one, τ Sco, ischaracterized by higher temperatures than the other, β Cru. Theseresults confirm previous work in which high temperatures have been foundfor θ1 Ori C and τ Sco and taken as evidence forchanneling of the wind in magnetic fields, the existence of which isrelated to the stars' youth. Our results demonstrate the utility of ourmethod for deriving temperature information for large samples of X-rayemission-line spectra.

The D/H Ratio toward PG 0038+199
We determine the D/H ratio in the interstellar medium toward the DOwhite dwarf PG 0038+199 using spectra from the Far UltravioletSpectroscopic Explorer (FUSE), with ground-based support from KeckHIRES. We employ curve-of-growth, apparent optical depth, andprofile-fitting techniques to measure the column densities and limits ofmany other species (H2, Na I, C I, C II, C III, N I, N II, OI, Si II, P II, S III, Ar I, and Fe II), which allows us to determinerelated ratios such as D/O, D/N, and the H2 fraction. Ourefforts are concentrated on measuring gas-phase D/H, which is key tounderstanding Galactic chemical evolution, and comparing it topredictions from big bang nucleosynthesis. We find column densitieslogN(HI)=20.41+/-0.08, logN(DI)=15.75+/-0.08, andlogN(H2)=19.33+/-0.04, yielding a molecular hydrogen fractionof 0.14+/-0.02 (2 σ errors), with an excitation temperature of143+/-5 K. The high H I column density implies that PG 0038+199 liesoutside of the Local Bubble; we estimate its distance to be297+164-104 pc (1 σ).[DI+HD]/[HI+2H2] toward PG 0038+199 is1.91+0.52-0.42×10-5 (2 σ).There is no evidence of component structure on the scale ofΔv>8 km s-1, based on Na I, but there is marginalevidence for structure on smaller scales. The D/H value is high comparedto the majority of recent D/H measurements but consistent with thevalues for two other measurements at similar distances. D/O is inagreement with other distant measurements. The scatter in D/H valuesbeyond ~100 pc remains a challenge for Galactic chemical evolution.This paper is dedicated in memory of Ervin J. Williger, father of thefirst author, who passed away on 2003 September 13. His enthusiasticsupport and encouragement were essential to its successful completion.Based on data from the Far Ultraviolet Spectroscopic Explorer and the W.M. Keck Observatory.

Evidence of Correlated Titanium and Deuterium Depletion in the Galactic Interstellar Medium
Current measurements indicate that the deuterium abundance in diffuseinterstellar gas varies spatially by a factor of ~4 among sight linesextending beyond the Local Bubble. One plausible explanation for thescatter is the variable depletion of D onto dust grains. To test thisscenario, we have obtained high signal-to-noise, high- resolutionprofiles of the refractory ion Ti II along seven Galactic sight lineswith D/H ranging from 0.65 to 2.1×10-5. Thesemeasurements, acquired with the recently upgraded Keck/HIRESspectrometer, indicate a correlation between Ti/H and D/H at the betterthan 95% confidence level Therefore, our observations support theinterpretation that D/H scatter is associated with differentialdepletion. We note, however, that Ti/H values taken from the literaturedo not uniformly show the correlation. Finally, we identify significantcomponent-to-component variations in the depletion levels amongindividual sight lines and discuss complications arising from thisbehavior.

X-Ray Study of Herbig Ae/Be Stars
We present ASCA results of intermediate-mass pre-main-sequence (PMS)stars, or Herbig Ae/Be (HAeBe) stars. Among the 35 ASCA pointed sources,we detect 11 plausible X-ray counterparts. X-ray luminosities of thedetected sources in the 0.5-10 keV band are in the range oflogLX~30-32 ergs s-1, which is systematicallyhigher than those of low-mass PMS stars. This fact suggests that thecontribution of a possible low-mass companion is not large. Most of thebright sources show significant time variation; in particular, two HAeBestars-MWC 297 and TY CrA-exhibit flarelike events with long decaytimescales (e-folding time ~10-60 ks). These flare shapes are similar tothose of low-mass PMS stars. The X-ray spectra are successfullyreproduced by an absorbed one- or two-temperature thin-thermal plasmamodel. The temperatures are in the range of kT~1-5 keV, significantlyhigher than those of main-sequence OB stars (kT<1 keV). These X-rayproperties are not explained by wind-driven shocks, but are more likelydue to magnetic activity. On the other hand, the plasma temperaturerises as absorption column density increases or as HAeBe stars ascend toearlier phases. The X-ray luminosity reduces after stellar age of a fewtimes 106 yr. X-ray activity may be related to stellarevolution. The age of the activity decay is apparently near thetermination of jet or outflow activity. We thus hypothesize thatmagnetic activity originates from the interaction of the large-scalemagnetic fields coupled to the circumstellar disk. We also discussdifferences in X-ray properties between HAeBe stars and main-sequence OBstars.

Photometric Accretion Signatures Near the Substellar Boundary
Multiepoch imaging of the Orion equatorial region by the Sloan DigitalSky Survey has revealed that significant variability in the bluecontinuum persists into the late-M spectral types, indicating thatmagnetospheric accretion processes occur below the substellar boundaryin the Orion OB1 association. We investigate the strength of theaccretion-related continuum veiling by comparing the reddening-invariantcolors of the most highly variable stars against those of main-sequenceM dwarfs and evolutionary models. A gradual decrease in the g-bandveiling is seen for the cooler and less massive members, as expected fora declining accretion rate with decreasing mass. We also see evidencethat the temperature of the accretion shock decreases in the very lowmass regime, reflecting a reduction in the energy flux carried by theaccretion columns. We find that the near-IR excess attributed tocircumstellar disk thermal emission drops rapidly for spectral typeslater than M4. This is likely due to the decrease in color contrastbetween the disk and the cooler stellar photosphere. Since accretion,which requires a substantial stellar magnetic field and the presence ofa circumstellar disk, is inferred for masses down to 0.05Msolar, we surmise that brown dwarfs and low-mass stars sharea common mode of formation.

B Star Rotational Velocities in h and χ Persei: A Probe of Initial Conditions during the Star Formation Epoch?
Projected rotational velocities (vsini) have been measured for 216 B0-B9stars in the rich, dense h and χ Persei double cluster and comparedwith the distribution of rotational velocities for a sample of fieldstars having comparable ages (t~12-15 Myr) and masses (M~4-15Msolar). For stars that are relatively little evolved fromtheir initial locations on the zero-age main sequence (ZAMS) (those withmasses M~4-5 Msolar), the mean vsini measured for the h andχ Per sample is slightly more than 2 times larger than the meandetermined for field stars of comparable mass, and the cluster and fieldvsini distributions differ with a high degree of significance. Forsomewhat more evolved stars with masses in the range 5-9Msolar, the mean vsini in h and χ Per is 1.5 times thatof the field; the vsini distributions differ as well, but with a lowerdegree of statistical significance. For stars that have evolvedsignificantly from the ZAMS and are approaching the hydrogen exhaustionphase (those with masses in the range 9-15 Msolar), thecluster and field star means and distributions are only slightlydifferent. We argue that both the higher rotation rates and the patternof rotation speeds as a function of mass that differentiatemain-sequence B stars in h and χ Per from their field analogs werelikely imprinted during the star formation process rather than a resultof angular momentum evolution over the 12-15 Myr cluster lifetime. Wespeculate that these differences may reflect the effects of the higheraccretion rates that theory suggests are characteristic of regions thatgive birth to dense clusters, namely, (1) higher initial rotationspeeds; (2) higher initial radii along the stellar birth line, resultingin greater spin-up between the birth line and the ZAMS; and (3) a morepronounced maximum in the birth line radius-mass relationship thatresults in differentially greater spin-up for stars that become mid- tolate-B stars on the ZAMS.

Deuterium Depletion and Magnesium Enhancement in the Local Disk
The local disk deuterium is known to be depleted in comparison to thelocal bubble. We used Hubble Space Telescope (HST) spectra to obtaincolumn densities of Si, Mg and Fe. We compared normalized columndensities of these elements in the directions with high and lowdeuterium abundances.We show, that the lines of sight that are depleted in deuterium, areenhanced in magnesium. This observation implicates that astration isresponsible for both deuterium depletion and magnesium enhancement.

Interstellar 12C/13C ratios through CH^+λλ 3957,4232 absorption in local clouds: incomplete mixing in the ISM
The 12C/13C isotope ratio is a tracer of stellaryields and the efficiency of mixing in the ISM.12CH+/13CH+ is not affectedby interstellar chemistry, and is the most secure way of measuring12C/13C in the diffuse ISM.R=12C/13C is 90 in the solar system. Previousmeasurements of 12CH+λλ3957.7,4232.3and 13CH+λλ3958.2,4232.0 absorptiontoward nearby stars indicate some variations in12C/13C, with values ranging from 40 to 90suggesting inefficient mixing. Except for the cloud toward ζOph,these R values are strongly affected by noise. With UVES on the VLT wehave improved on the previous interstellar 12C/13Cmeasurements. The weighted 12C/13C ratio in thelocal ISM is 78.27 ± 1.83, while the weighted dispersion of ourmeasurements is 12.7, giving a 6.9σ scatter. Thus we report on a6.9σ detection of 16.2% root-mean-square variations in the carbonisotopic ratio on scales of ~100 pc: R= 74.7 ± 2.3 in theζOph cloud, while R = 88.6 ± 3.0 toward HD 152235 in theLupus clouds, R = 62.2 ± 5.3 towards HD 110432 in the Coalsack,and R = 98.9 ± 10.1 toward HD 170740. The observed variations in13C/12C are the first significant detection ofchemical heterogeneity in the local ISM.

An XMM-Newton look at the Wolf-Rayet star WR 40. The star itself, its nebula and its neighbours
We present the results of an XMM-Newton observation of the field of theWolf-Rayet star WR 40. Despite a nominal exposure of 20 ks and the highsensitivity of the satellite, the star itself is not detected: we thusderive an upper limit on its X-ray flux and luminosity. Joining thisresult to recent reports of a non-detection of some WC stars, we suggestthat the X-ray emission from single normal Wolf-Rayet stars could oftenbe insignificant despite remarkable instabilities in the wind. On thebasis of a simple modelling of the opacity of the Wolf-Rayet wind of WR40, we show that any X-ray emission generated in the particular zonewhere the shocks are supposed to be numerous will indeed have littlechance to emerge from the dense wind of the Wolf-Rayet star. We alsoreport the non-detection of the ejecta nebula RCW 58 surrounding WR 40.Concerning the field around these objects, we detected 33 X-ray sources,most of them previously unknown: we establish a catalog of these sourcesand cross-correlate it with catalogs of optical/infrared sources.Based on observations with XMM-Newton, an ESA Science Mission withinstruments and contributions directly funded by ESA Member States andthe USA (NASA).

Close binary stars in ob-association regions i. preliminary investigation
We performed a sample of O- and B-eclipsing binary stars inOB-association regions and obtained the preliminary list of 147 binariesin 45 OB-association regions. We tried to elucidate the question whether(or not) the close binaries belong to corresponding OB-associations,from the commonness of their proper motions, radial velocities anddistances. Based on the completeness of the data,the binaries aredevided into three groups and the scheme for calculation of degree ofbelonging of stars to OB-associations is developed. Necessary data arenot available for nine systems and they are given in a specific table.For 12 cases, the binaries project onto the regions of two associations.We show that 33 (22.3%) close binary stars are members, 65 (43.9%) areprobable members and 39 (26.4%) are less probable members of theOB-associations. We find that 11 binaries belong to the Galaxybackground. The comparison of the distributions of orbital periods forthe binaries in OB-associations and for O-, B-binaries of the Galaxybackground shows their considerable differences in the vicinity of thetwo-day period.

Doppler Tomography of the Massive Compact Binary Stars in the Multiple Star Systems δ Orionis and HD 206267
Not Available

Performance of Subaru Cassegrain Adaptive Optics System
The design and performance of the Cassegrain Adaptive Optics (AO) systemfor the 8.2m Subaru Telescope are reported. The system is based on acurvature wavefront sensor with 36 photon-counting avalanche photodiodemodules and a bimorph wavefront correcting deformable mirror with 36driving electrodes. The engineering first light of the AO system tookplace in 2000 December. The AO system has been in service since 2002April for two open-use instruments, an infrared camera and spectrographand a coronagraph imager with adaptive optics. The Strehl ratio in theK-band is around 0.3 for bright guide stars under 0''.4 K-band seeingcondition. The control loop performs with 2060 corrections per second.High sensitivity of the wavefront sensor allows significant improvementin the image quality, even for faint guide stars down to R = 18 mag. TheFWHM of stellar images in a globular cluster was measured to derive anestimation of the isoplanatic angle and was found nearly constant out to30'' from the guide star, indicating that the height of the effectiveturbulent layer of that particular night was less than 1.8km. Theon-going upgrade plans for a fivefold increase in the number of controlelements and for the installation of a laser guide AO system aredescribed.

Large-scale wind structures in OB supergiants: a search for rotationally modulated Hα variability
We present the results of a long-term monitoring campaign of theHα line in a sample of bright OB supergiants (O7.5-B9) which aimsat detecting rotationally modulated changes potentially related to theexistence of large-scale wind structures. A total of 22 objects weremonitored during 36 nights spread over six months in 2001-2002.Coordinated broad-band photometric observations were also obtained forsome targets. Conspicuous evidence for variability in Hα is foundfor the stars displaying a feature contaminated by wind emission. Mostchanges take place on a daily time-scale, although hourly variations arealso occasionally detected. Convincing evidence for a cyclical patternof variability in Hα has been found in two stars: HD 14134 and HD42087. Periodic signals are also detected in other stars, butindependent confirmation is required. Rotational modulation is suggestedfrom the similarity between the observed recurrence time-scales (in therange 13-25 d) and estimated periods of stellar rotation. We callattention to the atypical case of HD 14134, which exhibits a clear12.8-d periodicity, both in the photometric and in the spectroscopicdata sets. This places this object among a handful of early-type starswhere one may observe a clear link between extended wind structures andphotospheric disturbances. Further modelling may test the hypothesisthat azimuthally-extended wind streams are responsible for the patternsof spectral variability in our target stars.

Magnetic fields in massive stars: dynamics and origin
Evidence continues to accumulate in favour of the presence of magneticfields on the surfaces of massive stars. Some authors hypothesize thatsuch fields originate in a dynamo in the convective core, with buoyancybringing flux tubes to the surface. Here we show that, when realisticstellar models are used, this `core dynamo hypothesis' encounters aserious difficulty: in order for surface fields to originate in a coredynamo, the core must create magnetic fields that are much stronger thanequipartition values.As an alternative hypothesis for the origin of magnetic fields in OBstars, we suggest that a dynamo is operating in shear-unstable gas inthe radiative stellar envelope. Using a recently developed code for theevolution of rotating stars, we find that in a 10-Msolarzero-age main sequence (ZAMS) star with a typical rotation period, morethan 90 per cent of the volume of the star is subject to shearinstability. We have recently proposed that dynamo operation inshear-unstable gas helps to explain certain properties of mass loss incool giants. Here, in the context of hot stars, we show that fieldswhich originate in the shear-unstable regions of the envelope can reachthe surface without violating the constraints of equipartition. Suchfields rise to the surface on time-scales which are short compared tomain-sequence lifetimes.

A Galactic O Star Catalog
We have produced a catalog of 378 Galactic O stars with accuratespectral classifications that is complete for V<8 but includes manyfainter stars. The catalog provides cross-identifications with othersources; coordinates (obtained in most cases from Tycho-2 data);astrometric distances for 24 of the nearest stars; optical (Tycho-2,Johnson, and Strömgren) and NIR photometry; group membership,runaway character, and multiplicity information; and a Web-based versionwith links to on-line services.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Orion
Right ascension:05h32m00.50s
Declination:-00°17'04.0"
Apparent magnitude:6.85
Proper motion RA:-1
Proper motion Dec:-5.5
B-T magnitude:6.673
V-T magnitude:6.828

Catalogs and designations:
Proper NamesHEITOR
Bayerδ Ori
Flamsteed34 Ori
HD 1989HD 36485
TYCHO-2 2000TYC 4766-2444-1
USNO-A2.0USNO-A2 0825-01561139
BSC 1991HR 1851

→ Request more catalogs and designations from VizieR