Home     Getting Started     New Pictures     Picture of the Day     Blog New!     Login  

HD 76932


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Asteroseismology and interferometry .
Asteroseismology aims at constraining the stellar evolution theory, andallows to determine the age of stars together with other fundamentalparameters. We present recent results obtained by interferometry, andprospects for the future.

Chemical abundances of 32 mildly metal-poor stars
Context: .The formation scenario of the Galactic thick disk is anunresolved problem. Chemical abundances in long-lived dwarf stars of thethin and thick disks provide information of the Galactic diskformation.Aims.We present photospheric abundances of the O, Na, Mg, Al,Si, Ca, Sc, Ti, V, Cr, Mn, Ni, and Ba elements for 32 mildly metal-poorstars with [Fe/H]˜ -0.7. According to their kinematics, age, and [α/Fe] , sample stars are identified to thin disk, thick disk, andhalo population memberships. Element abundances for sample stars arediscussed as a function of metallicity.Methods.High resolution and highsignal-to-noise ratio spectra were obtained with the CoudéEchelle Spectrograph mounted on the 2.16 m telescope at the NationalAstronomical Observatories (Xinglong, China). Effective temperatureswere estimated from colour indices, and surface gravities from Hipparcosparallaxes. Stellar abundances were determined from a differential LTEanalysis. The kinematics parameters were calculated from the parallax,proper motion, and radial velocity. Stellar ages were determined fromtheoretical stellar evolution tracks.Results.The average age of thethick disk stars is older than the thin disk stars. Our elementabundance results extend and confirm previous works. The oxygen andother α-elements (Mg, Si, Ca, and Ti) abundances of thin and thickdisk stars show distinct trends at [Fe/H]≤-0.60. The [Al/Fe]behaviour is exactly as an α-element, although the separation for[Na/Fe] of thin and thick disk stars is not clear. The elements V, Cr,and Ni follow Fe very closely, and there is no offset between thin andthick disk stars, but the Sc and Mn abundance trends of the thin andthick disk stars are different, and [Ba/Fe] of thin disk and thick diskstars shows different behaviour.

Sulfur Abundances in Metal-Poor Stars Based on OAO-1.88m/HIDES Spectra
The LTE abundances of sulfur (S) of 21 metal-poor stars and one normalstar were explored in the metallicity range of -3 < [Fe/H] ≤ 0,based on the equivalent widths of the S I (1) 9212, 9237Å and S I(6) 8693, 9894Å lines measured on high-resolution spectra, whichwere observed by the OAO 1.88-m telescope equipped with HIDES. Our mainresults are: (1) The abundances derived from the S I (6) lines areconsistent with those from the S I (1) lines among our sample stars inthe range of [Fe/H] > -2 with an average difference of +0.03 ±0.05 dex, whereas a significant discrepancy is observed in the range of[Fe/H] ≤ -2. (2) The behavior of [S(6)/Fe], versus [Fe/H] of ourhalo sample stars exhibits a nearly flat trend with an average of +0.62± 0.09 dex in the range of -3 < [Fe/H] < -1.25, and shows adistribution around +0.29 dex in -1.25 ≤ [Fe/H] ≤ -0.7. Oursample stars with -1.25 ≤ [Fe/H] ≤ -0.5 follow an increasingtrend with decreasing [Fe/H]. The behavior of [S(1)/Fe] of our samplestars also shows essentially the same trend as [S(6)/Fe], though it isquantitatively different. (3) The S behavior in the range of -3 <[Fe/H] ≤ 0 inferred from the abundances of multiplets 6 and 1 arequalitatively consistent with each other, and may be represented by acombination of a nearly flat trend and a linearly increasing trend withdecreasing [Fe/H]. A transition of the trend is likely to occur at[Fe/H] ˜ -1.5 dex.

Lithium Abundances of F-, G-, and K-Type Stars: Profile-Fitting Analysis of the Li I 6708 Doublet
An extensive profile-fitting analysis was performed for the Li(+Fe)6707-6708Å feature of nearby 160 F-K dwarfs/subgiants (including27 planet-host stars) in the Galactic disk ( 7000 K ≳Teff ≳ 5000 K, -1 ≲ [Fe/H] ≲ +0.4), in orderto establish the photospheric lithium abundances of these stars. Thenon-LTE effect (though quantitatively insignificant) was taken intoaccount based on our statistical equilibrium calculations, which werecarried out on an adequate grid of models. Our results confirmed most ofthe interesting observational characteristics revealed by recentlypublished studies, such as the bimodal distribution of the Li abundancesfor stars at Teff ≳ 6000 K, the satisfactory agreementof the upper envelope of the A(Li) vs. [Fe/H] distribution with thetheoretical models, the existence of a positive correlation betweenA(Li) and the stellar mass, and the tendency of lower lithium abundancesof planet-host stars (as compared to stars without planets) at thenarrow ``transition'' region of 5900 K ≳ Teff ≳5800 K. The solar Li abundance derived from this analysis is 0.92 (H =12.00), which is by 0.24dex lower than the widely referenced standardvalue of 1.16.

Spectroscopic Study on the Atmospheric Parameters of Nearby F--K Dwarfs and Subgiants
Based on a collection of high-dispersion spectra obtained at OkayamaAstrophysical Observatory, the atmospheric parameters (Teff,log g, vt, and [Fe/H]) of 160 mid-F through early-K starswere extensively determined by the spectroscopic method using theequivalent widths of Fe I and Fe II lines along with the numericaltechnique of Takeda et al. (2002, PASJ, 54, 451). The results arecomprehensively discussed and compared with the parameter values derivedby different approaches (e.g., photometric colors, theoreticalevolutionary tracks, Hipparcos parallaxes, etc.) as well as with thepublished values found in various literature. It has been confirmed thatour purely spectroscopic approach yields fairly reliable and consistentresults.

Abundances of Mn, Co and Eu in a sample of 20 F-G disk stars: the influence of hyperfine structure splitting
We present Mn, Co and Eu abundances for a sample of 20 disk F and Gdwarfs and subgiants with metallicities in the range-0.8≤[Fe/H]≤+0.3. We investigate the influence of hyperfinestructure (HFS) on the derived abundances of Mn and Co by using HFS datafrom different sources in the literature, as well as calculated HFS frominteraction factors A and B. Eu abundances were obtained from spectralsynthesis of one Eu II line that takes into account HFS from a series ofrecent laboratory measurements. For the lines analysed in this study, wefind that for manganese, the differences between abundances obtainedwith different HFSs are no greater than 0.10 dex. Our cobalt abundancesare even less sensitive to the choice of HFS than Mn, presenting a 0.07dex maximum difference between determinations with different HFSs.However, the cobalt HFS data from different sources are significantlydifferent. Our abundance results for Mn offer an independentconfirmation of literature results, favouring type Ia supernovae as themain nucleosynthesis site of Mn production, in contrast to trends of Mnversus metallicity previously reported in the literature. For Co, weobtain [Co/Fe]˜0.0 in the range -0.3<[Fe/H]<+0.3 and [Co/Fe]rising to a level of +0.2 when [Fe/H] decreases from -0.3 to -0.8, indisagreement with recent results in the literature. The observeddiscrepancies may be attributed to the lack of HFS in the works we usedfor comparison. Our results for Eu are in accordance with low-mass typeII supernovae being the main site of the r-process nucleosynthesis.

Sulphur abundance in Galactic stars
We investigate sulphur abundance in 74 Galactic stars by using highresolution spectra obtained at ESO VLT and NTT telescopes. For the firsttime the abundances are derived, where possible, from three opticalmultiplets: Mult. 1, 6, and 8. By combining our own measurements withdata in the literature we assemble a sample of 253 stars in themetallicity range -3.2  [Fe/H]  +0.5. Two important features,which could hardly be detected in smaller samples, are obvious from thislarge sample: 1) a sizeable scatter in [S/Fe] ratios around [Fe/H]˜-1; 2) at low metallicities we observe stars with [S/Fe]˜ 0.4, aswell as stars with higher [S/Fe] ratios. The latter do not seem to bekinematically different from the former ones. Whether the latter findingstems from a distinct population of metal-poor stars or simply from anincreased scatter in sulphur abundances remains an open question.

Chemical abundances in 43 metal-poor stars
We have derived abundances of O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Fe,Ni, and Ba for 43 metal-poor field stars in the solar neighbourhood,most of them subgiants or turn-off-point stars with iron abundances[Fe/H] ranging from -0.4 to -3.0. About half of this sample has not beenspectroscopically analysed in detail before. Effective temperatures wereestimated from uvby photometry, and surface gravities primarily fromHipparcos parallaxes. The analysis is differential relative to the Sun,and was carried out with plane-parallel MARCS models. Various sources oferror are discussed and found to contribute a total error of about0.1-0.2 dex for most elements, while relative abundances, such as[Ca/Fe], are most probably more accurate. For the oxygen abundances,determined in an NLTE analysis of the 7774 Å triplet lines, theerrors may be somewhat larger. We made a detailed comparison withsimilar studies and traced the reasons for the, in most cases,relatively small differences. Among the results we find that [O/Fe]possibly increases beyond [Fe/H] = -1.0, though considerably less sothan in results obtained by others from abundances based on OH lines. Wedid not trace any tendency toward strong overionization of iron, andfind the excesses, relative to Fe and the Sun, of the α elementsMg, Si, and Ca to be smaller than those of O. We discuss someindications that also the abundances of different α elementsrelative to Fe vary and the possibility that some of the scatter aroundthe trends in abundances relative to iron may be real. This may supportthe idea that the formation of Halo stars occurred in smaller systemswith different star formation rates. We verify the finding by Gratton etal. (2003b, A&A, 406, 131) that stars that do not participate in therotation of the galactic disk show a lower mean and larger spread in [α/Fe] than stars participating in the general rotation. The latterstars also seem to show some correlation between [ α/Fe] androtation speed. We trace some stars with peculiar abundances, amongthese two Ba stars, HD 17072 and HD196944, the second already known to be rich in s elements.Finally we advocate that a spectroscopic study of a larger sample ofhalo stars with well-defined selection criteria is very important, inorder to add to the very considerable efforts that various groups havealready made.

Abundance trends in kinematical groups of the Milky Way's disk
We have compiled a large catalogue of metallicities and abundance ratiosfrom the literature in order to investigate abundance trends of severalalpha and iron peak elements in the thin disk and the thick disk of theGalaxy. The catalogue includes 743 stars with abundances of Fe, O, Mg,Ca, Ti, Si, Na, Ni and Al in the metallicity range -1.30 < [Fe/H]< +0.50. We have checked that systematic differences betweenabundances measured in the different studies were lower than randomerrors before combining them. Accurate distances and proper motions fromHipparcos and radial velocities from several sources have been retreivedfor 639 stars and their velocities (U, V, W) and galactic orbits havebeen computed. Ages of 322 stars have been estimated with a Bayesianmethod of isochrone fitting. Two samples kinematically representative ofthe thin and thick disks have been selected, taking into account theHercules stream which is intermediate in kinematics, but with a probabledynamical origin. Our results show that the two disks are chemicallywell separated, they overlap greatly in metallicity and both showparallel decreasing alpha elements with increasing metallicity, in theinterval -0.80 < [Fe/H] < -0.30. The Mg enhancement with respectto Fe of the thick disk is measured to be 0.14 dex. An even largerenhancement is observed for Al. The thick disk is clearly older than thethin disk with tentative evidence of an AMR over 2-3 Gyr and a hiatus instar formation before the formation of the thin disk. We do not observea vertical gradient in the metallicity of the thick disk. The Herculesstream has properties similar to that of the thin disk, with a widerrange of metallicity. Metal-rich stars assigned to the thick disk andsuper-metal-rich stars assigned to the thin disk appear as outliers inall their properties.

Early star formation in the Galaxy from beryllium and oxygen abundances
We investigate the evolution of the star formation rate in the earlyGalaxy using beryllium and oxygen abundances in metal poor stars.Specifically, we show that stars belonging to two previously identifiedkinematical classes (the so-called "accretion" and "dissipative"populations) are neatly separated in the [O/Fe] vs. log (Be/H) diagram.The dissipative population follows the predictions of our model ofGalactic evolution for the thick disk component, suggesting that theformation of this stellar population occurred on a timescalesignificantly longer (by a factor ˜ 5-10) than the accretioncomponent. The latter shows a large scatter in the [O/Fe] vs. log (Be/H)diagram, probably resulting from the inhomogeneous enrichment in oxygenand iron of the protogalactic gas. Despite the limitation of the sample,the data suggest that the combined use of products of spallationreactions (like beryllium) and elemental ratios of stellarnucleosynthesis products (like [O/Fe]) can constrain theoretical modelsfor the formation and early evolution of our Galaxy.

The age of the Galactic thin disk from Th/Eu nucleocosmochronology. I. Determination of [Th/Eu] abundance ratios
The purpose of this work is to resume investigation of Galactic thindisk dating using nucleocosmochronology with Th/Eu stellar abundanceratios, a theme absent from the literature since 1990. A stellar sampleof 20 disk dwarfs/subgiants of F5 to G8 spectral types with-0.8≤[Fe/H]≤+0.3 was selected. In stars with such spectral typesand luminosity classes, spectral synthesis techniques must be employedif we wish to achieve acceptably accurate results. An homogeneous,self-consistent set of atmospheric parameters was determined. Effectivetemperatures were determined from photometric calibrations and Hαprofile fitting; surface gravities were obtained from Teff,stellar masses and luminosities; microturbulence velocities andmetallicities were obtained from detailed, differential spectroscopicanalysis, relative to the Sun, using equivalent widths of Fe I and Fe IIlines. Chemical abundances of the elements that contaminate the Th andEu spectral regions (Ti, V, Cr, Mn, Co, Ni, Ce, Nd, and Sm) weredetermined through spectroscopic analysis. Abundance uncertainties werethoroughly scrutinised, their average value (0.10±0.02) dex being found to be satisfactorily low. Eu and Th abundances weredetermined by spectral synthesis of one Eu II line (4129.72 Å) andone Th II line (4019.13 Å), taking into account the detailedhyperfine structures of contaminating Co lines, as well as the hyperfinestructure and isotope shift of the Eu line. Comparison of our abundanceswith literature data shows that our results exhibit a similar behaviour,but a considerably lower scatter (36% lower for Eu, and 61% lower forTh). The [Th/Eu] abundance ratios thus obtained were used, in the secondpaper of this series, to determine the age of the Galactic disk.

Abundance correlations in mildly metal-poor stars. II. Light elements (C to Ca)
Accurate relative abundances have been obtained for carbon, oxygen,sodium, aluminium, silicon, and calcium in a sample of mildly metal-poorstars. This analysis complements a previous study carried out by Jehinet al. ([CITE], A&A, 341, 241), which provided the basis for theEASE scenario. This scenario postulates that field metal-poor stars wereborn in self-enriched proto-globular cluster clouds. By furtherinvestigating the correlations between the different α-elementabundances, we propose a modified scenario for the formation ofintermediate metallicity stars, in which the stars exhibiting lower thanaverage α/Fe abundance ratios would form in low mass clouds,unable to sustain the formation of very massive stars (M 30~M_ȯ). Moreover, the carbon-to-iron ratio is found to decrease asone climbs the so-called Population IIb branch, i.e. when the s-elementabundance increases. In the framework of the EASE scenario, we interpretthis anticorrelation between the carbon and the s-element abundances asa signature of a hot bottom burning process in the metal-poor AGB starswhich expelled the matter subsequently accreted by our Population IIbstars.Based on observations collected at the European Southern Observatory, LaSilla, Chile (ESO Programmes 56.E-0384, 57.E-0400 and 59.E-0257).

α-, r-, and s-process element trends in the Galactic thin and thick disks
From a detailed elemental abundance analysis of 102 F and G dwarf starswe present abundance trends in the Galactic thin and thick disks for 14elements (O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, Y, Ba, and Eu).Stellar parameters and elemental abundances (except for Y, Ba and Eu)for 66 of the 102 stars were presented in our previous studies (Bensbyet al. [CITE], A&A, 410, 527, [CITE], A&A, 415, 155). The 36stars that are new in this study extend and confirm our previous resultsand allow us to draw further conclusions regarding abundance trends. Thes-process elements Y and Ba, and the r-element Eu have also beenconsidered here for the whole sample for the first time. With this newlarger sample we now have the following results: 1) smooth and distinctabundance trends that for the thin and thick disks are clearlyseparated; 2) the α-element trends for the thick disk show typicalsignatures from the enrichment of SN Ia; 3) the thick disk stellarsample is in the mean older than the thin disk stellar sample; 4) thethick disk abundance trends are invariant with galactocentric radii(R_m); 5) the thick disk abundance trends appear to be invariant withvertical distance (Z_max) from the Galactic plane. Adding furtherevidence from the literaure we argue that a merger/interacting scenariowith a companion galaxy to produce a kinematical heating of the stars(that make up today's thick disk) in a pre-existing old thin disk is themost likely formation scenario for the Galactic thick disk. The 102stars have -1 ≲ [Fe/H] ≲ +0.4 and are all in the solarneighbourhood. Based on their kinematics they have been divided into athin disk sample and a thick disk sample consisting of 60 and 38 stars,respectively. The remaining 4 stars have kinematics that make themkinematically intermediate to the two disks. Their chemical abundancesalso place them in between the two disks. Which of the two diskpopulations these 4 stars belong to, or if they form a distinctpopulation of their own, can at the moment not be settled. The 66 starsfrom our previous studies were observed with the FEROS spectrograph onthe ESO 1.5-m telescope and the CES spectrograph on the ESO 3.6-mtelescope. Of the 36 new stars presented here 30 were observed with theSOFIN spectrograph on the Nordic Optical Telescope on La Palma, 3 withthe UVES spectrograph on VLT/UT2, and 3 with the FEROS spectrograph onthe ESO 1.5-m telescope. All spectra have high signal-to-noise ratios(typically S/N≳ 250) and high resolution (R˜ 80 000, 45 000,and 110 000 for the SOFIN, FEROS, and UVES spectra, respectively).Based on observations collected at the Nordic Optical Telescope on LaPalma, Spain, and at the European Southern Observatories on La Silla andParanal, Chile, Proposals # 65.L-0019(B), 67.B-0108(B), 69.B-0277. FullTables [see full text], [see full text] and [see full text] are onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/433/185

Lithium abundances of the local thin disc stars
Lithium abundances are presented for a sample of 181 nearby F and Gdwarfs with accurate Hipparcos parallaxes. The stars are on circularorbits about the Galactic centre and, hence, are identified as belongingto the thin disc. This sample is combined with two published surveys toprovide a catalogue of lithium abundances, metallicities ([Fe/H]),masses, and ages for 451 F-G dwarfs, almost all belonging to the thindisc. The lithium abundances are compared and contrasted with publishedlithium abundances for F and G stars in local open clusters. The fieldstars span a larger range in [Fe/H] than the clusters for which [Fe/H]~=0.0 +/- 0.2. The initial (i.e. interstellar) lithium abundance of thesolar neighbourhood, as derived from stars for which astration oflithium is believed to be unimportant, is traced from logɛ(Li) =2.2 at [Fe/H]=-1 to logɛ(Li) = 3.2 at +0.1. This form for theevolution is dependent on the assumption that astration of lithium isnegligible for the stars defining the relation. An argument is advancedthat this latter assumption may not be entirely correct, and, theevolution of lithium with [Fe/H] may be flatter than previouslysupposed. A sharp Hyades-like Li dip is not seen among the field starsand appears to be replaced by a large spread among lithium abundances ofstars more massive than the lower mass limit of the dip. Astration oflithium by stars of masses too low to participate in the Li dip isdiscussed. These stars show little to no spread in lithium abundance ata given [Fe/H] and mass.

The Detached Solar-Type Binary CV Boo
Not Available

The Indo-US Library of Coudé Feed Stellar Spectra
We have obtained spectra for 1273 stars using the 0.9 m coudéfeed telescope at Kitt Peak National Observatory. This telescope feedsthe coudé spectrograph of the 2.1 m telescope. The spectra havebeen obtained with the no. 5 camera of the coudé spectrograph anda Loral 3K×1K CCD. Two gratings have been used to provide spectralcoverage from 3460 to 9464 Å, at a resolution of ~1 Å FWHMand at an original dispersion of 0.44 Å pixel-1. For885 stars we have complete spectra over the entire 3460 to 9464 Åwavelength region (neglecting small gaps of less than 50 Å), andpartial spectral coverage for the remaining stars. The 1273 stars havebeen selected to provide broad coverage of the atmospheric parametersTeff, logg, and [Fe/H], as well as spectral type. The goal ofthe project is to provide a comprehensive library of stellar spectra foruse in the automated classification of stellar and galaxy spectra and ingalaxy population synthesis. In this paper we discuss thecharacteristics of the spectral library, viz., details of theobservations, data reduction procedures, and selection of stars. We alsopresent a few illustrations of the quality and information available inthe spectra. The first version of the complete spectral library is nowpublicly available from the National Optical Astronomy Observatory(NOAO) via ftp and http.

The Rise of the s-Process in the Galaxy
From newly obtained high-resolution, high signal-to-noise ratio spectrathe abundances of the elements La and Eu have been determined over thestellar metallicity range -3<[Fe/H]<+0.3 in 159 giant and dwarfstars. Lanthanum is predominantly made by the s-process in the solarsystem, while Eu owes most of its solar system abundance to ther-process. The changing ratio of these elements in stars over a widemetallicity range traces the changing contributions of these twoprocesses to the Galactic abundance mix. Large s-process abundances canbe the result of mass transfer from very evolved stars, so to identifythese cases we also report carbon abundances in our metal-poor stars.Results indicate that the s-process may be active as early as[Fe/H]=-2.6, although we also find that some stars as metal-rich as[Fe/H]=-1 show no strong indication of s-process enrichment. There is asignificant spread in the level of s-process enrichment even at solarmetallicity.

Synthetic Lick Indices and Detection of α-enhanced Stars. II. F, G, and K Stars in the -1.0 < [Fe/H] < +0.50 Range
We present an analysis of 402 F, G, and K solar neighborhood stars, withaccurate estimates of [Fe/H] in the range -1.0 to +0.5 dex, aimed at thedetection of α-enhanced stars and at the investigation of theirkinematical properties. The analysis is based on the comparison of 571sets of spectral indices in the Lick/IDS system, coming from fourdifferent observational data sets, with synthetic indices computed withsolar-scaled abundances and with α-element enhancement. We useselected combinations of indices to single out α-enhanced starswithout requiring previous knowledge of their main atmosphericparameters. By applying this approach to the total data set, we obtain alist of 60 bona fide α-enhanced stars and of 146 stars withsolar-scaled abundances. The properties of the detected α-enhancedand solar-scaled abundance stars with respect to their [Fe/H] values andkinematics are presented. A clear kinematic distinction betweensolar-scaled and α-enhanced stars was found, although a one-to-onecorrespondence to ``thin disk'' and ``thick disk'' components cannot besupported with the present data.

Stellar Chemical Signatures and Hierarchical Galaxy Formation
To compare the chemistries of stars in the Milky Way dwarf spheroidal(dSph) satellite galaxies with stars in the Galaxy, we have compiled alarge sample of Galactic stellar abundances from the literature. Whenkinematic information is available, we have assigned the stars tostandard Galactic components through Bayesian classification based onGaussian velocity ellipsoids. As found in previous studies, the[α/Fe] ratios of most stars in the dSph galaxies are generallylower than similar metallicity Galactic stars in this extended sample.Our kinematically selected stars confirm this for the Galactic halo,thin-disk, and thick-disk components. There is marginal overlap in thelow [α/Fe] ratios between dSph stars and Galactic halo stars onextreme retrograde orbits (V<-420 km s-1), but this is notsupported by other element ratios. Other element ratios compared in thispaper include r- and s-process abundances, where we find a significantoffset in the [Y/Fe] ratios, which results in a large overabundance in[Ba/Y] in most dSph stars compared with Galactic stars. Thus, thechemical signatures of most of the dSph stars are distinct from thestars in each of the kinematic components of the Galaxy. This resultrules out continuous merging of low-mass galaxies similar to these dSphsatellites during the formation of the Galaxy. However, we do not ruleout very early merging of low-mass dwarf galaxies, since up to one-halfof the most metal-poor stars ([Fe/H]<=-1.8) have chemistries that arein fair agreement with Galactic halo stars. We also do not rule outmerging with higher mass galaxies, although we note that the LMC and theremnants of the Sgr dwarf galaxy are also chemically distinct from themajority of the Galactic halo stars. Formation of the Galaxy's thickdisk by heating of an old thin disk during a merger is also not ruledout; however, the Galaxy's thick disk itself cannot be comprised of theremnants from a low-mass (dSph) dwarf galaxy, nor of a high-mass dwarfgalaxy like the LMC or Sgr, because of differences in chemistry.The new and independent environments offered by the dSph galaxies alsoallow us to examine fundamental assumptions related to thenucleosynthesis of the elements. The metal-poor stars ([Fe/H]<=-1.8)in the dSph galaxies appear to have lower [Ca/Fe] and [Ti/Fe] than[Mg/Fe] ratios, unlike similar metallicity stars in the Galaxy.Predictions from the α-process (α-rich freeze-out) would beconsistent with this result if there have been a lack of hypernovae indSph galaxies. The α-process could also be responsible for thevery low Y abundances in the metal-poor stars in dSph's; since [La/Eu](and possibly [Ba/Eu]) are consistent with pure r-process results, thelow [Y/Eu] suggests a separate r-process site for this light(first-peak) r-process element. We also discuss SNe II rates and yieldsas other alternatives, however. In stars with higher metallicities([Fe/H]>=-1.8), contributions from the s-process are expected; [(Y,La, and Ba)/Eu] all rise as expected, and yet [Ba/Y] is still muchhigher in the dSph stars than similar metallicity Galactic stars. Thisresult is consistent with s-process contributions from lower metallicityAGB stars in dSph galaxies, and is in good agreement with the slowerchemical evolution expected in the low-mass dSph galaxies relative tothe Galaxy, such that the build-up of metals occurs over much longertimescales. Future investigations of nucleosynthetic constraints (aswell as galaxy formation and evolution) will require an examination ofmany stars within individual dwarf galaxies.Finally, the Na-Ni trend reported in 1997 by Nissen & Schuster isconfirmed in Galactic halo stars, but we discuss this in terms of thegeneral nucleosynthesis of neutron-rich elements. We do not confirm thatthe Na-Ni trend is related to the accretion of dSph galaxies in theGalactic halo.

Empirically Constrained Color-Temperature Relations. II. uvby
A new grid of theoretical color indices for the Strömgren uvbyphotometric system has been derived from MARCS model atmospheres and SSGsynthetic spectra for cool dwarf and giant stars having-3.0<=[Fe/H]<=+0.5 and 3000<=Teff<=8000 K. Atwarmer temperatures (i.e., 8000-2.0. To overcome thisproblem, the theoretical indices at intermediate and high metallicitieshave been corrected using a set of color calibrations based on fieldstars having well-determined distances from Hipparcos, accurateTeff estimates from the infrared flux method, andspectroscopic [Fe/H] values. In contrast with Paper I, star clustersplayed only a minor role in this analysis in that they provided asupplementary constraint on the color corrections for cool dwarf starswith Teff<=5500 K. They were mainly used to test thecolor-Teff relations and, encouragingly, isochrones thatemploy the transformations derived in this study are able to reproducethe observed CMDs (involving u-v, v-b, and b-y colors) for a number ofopen and globular clusters (including M67, the Hyades, and 47 Tuc)rather well. Moreover, our interpretations of such data are verysimilar, if not identical, with those given in Paper I from aconsideration of BV(RI)C observations for the sameclusters-which provides a compelling argument in support of thecolor-Teff relations that are reported in both studies. Inthe present investigation, we have also analyzed the observedStrömgren photometry for the classic Population II subdwarfs,compared our ``final'' (b-y)-Teff relationship with thosederived empirically in a number of recent studies and examined in somedetail the dependence of the m1 index on [Fe/H].Based, in part, on observations made with the Nordic Optical Telescope,operated jointly on the island of La Palma by Denmark, Finland, Iceland,Norway, and Sweden, in the Spanish Observatorio del Roque de losMuchachos of the Instituto de Astrofisica de Canarias.Based, in part, on observations obtained with the Danish 1.54 mtelescope at the European Southern Observatory, La Silla, Chile.

The [Zn/Fe] - [Fe/H] trend for disk and halo stars
Zn abundances, derived from a model atmosphere analysis of theλ6362.35 Å Zn I line, are presented for 44 thin disk, 10thick disk and 8 halo dwarf stars in the metallicity range -1.0 <[Fe/H] < +0.2. It is found that [Zn/Fe] in thin disk stars shows aslight increasing trend with decreasing metallicity reaching a value[Zn/Fe] ≃ +0.1 at [Fe/H] = -0.6. The thick disk stars in themetallicity range -0.9 < [Fe/H] < -0.6 have an average [Zn/Fe]≃ +0.15 dex, whereas five alpha-poor and Ni-poor halo stars in thesame metallicity range have [Zn/Fe] ≃ 0.0 dex. These resultsindicate that Zn is not an exact tracer of Fe as often assumed inabundance studies of damped Lyman-alpha systems (DLAs). A betterunderstanding of the nucleosynthesis of Zn is needed in order to obtainmore detailed information on the past history of star formation in DLAsfrom e.g. the observed sulphur/zinc ratio.Based on observations collected at the National AstronomicalObservatories, Xinglong, China and the European Southern Observatory, LaSilla, Chile (ESO No. 67.D-0106).

Cu and Zn in the early Galaxy
We present Cu and Zn abundances for 38 FGK stars, mostly dwarfs,spanning a metallicity range between solar and [Fe/H] = -3. Theabundances were obtained using Kurucz's local thermal equilibrium (LTE)model atmospheres and the near-UV lines of Cu I 3273.95 Å and Zn I3302.58 Å observed at high spectral resolution. The trend of[Cu/Fe] versus [Fe/H] is almost solar for [Fe/H] > -1 and thendecreases to a plateau <[Cu/Fe]> = -0.98 at [Fe/H] < -2.5,whereas the [Zn/Fe] trend is essentially solar for [Fe/H] > -2 andthen slightly increases at lower metallicities to an average value of<[Zn/Fe]> = +0.18. We compare our results with previous work onthese elements, and briefly discuss them in terms of nucleosynthesisprocesses. Predictions of halo chemical evolution fairly reproduce thetrends, especially the [Cu/Fe] plateau at very low metallicities, but toa lesser extent the higher [Zn/Fe] ratios at low metallicities,indicating possibly missing yields.

Galactic evolution of nitrogen
We present detailed spectroscopic analysis of nitrogen abundances in 31unevolved metal-poor stars analysed by spectral synthesis of the near-UVNH band at 3360 Å observed at high resolution with varioustelescopes. We found that [N/Fe] scales with that of iron in themetallicity range -3.1 <[Fe/H]<0 with the slope 0.01±0.02.Furthermore, we derive uniform and accurate (N/O) ratios using oxygenabundances from near-UV OH lines obtained in our previous studies. Wefind that a primary component of nitrogen is required to explain theobservations. The NH lines are discovered in the VLT/UVES spectra of thevery metal-poor subdwarfs G64-12 and LP815-43 indicating that thesestars are N rich. The results are compared with theoretical models andobservations of extragalactic H II regions and Damped Lyα systems.This is the first direct comparison of the (N/O) ratios in these objectswith those in Galactic stars.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

On the correlation of elemental abundances with kinematics among galactic disk stars
We have performed the detailed analysis of 174 high-resolution spectraof FGK dwarfs obtained with the ELODIE echelle spectrograph at theObservatoire de Haute-Provence. Abundances of Fe, Si and Ni have beendetermined from equivalent widths under LTE approximation, whereasabundances of Mg have been determined under NLTE approximation usingequivalent widths of 4 lines and profiles of 5 lines. Spatial velocitieswith an accuracy better than 1 km s-1, as well as orbits,have been computed for all stars. They have been used to define 2subsamples kinematically representative of the thin disk and the thickdisk in order to highlight their respective properties. A transitionoccurs at [Fe/H] =-0.3. Stars more metal-rich than this value have aflat distribution with Zmax;<1 kpc and σW<20 km s-1, and a narrow distribution of [α/Fe].There exist stars in this metallicity regime which cannot belong to thethin disk because of their excentric orbits, neither to the thick diskbecause of their low scale height. Several thin disk stars areidentified down to [Fe/H] =-0.80. Their Mg enrichment is lower thanthick disk stars with the same metallicity. We confirm from a largersample the results of Feltzing et al. (\cite{felt03}) and Bensby et al.(\cite{ben03}) showing a decrease of [α/Fe] with [Fe/H] in thethick disk interpreted as the signature of the SNIa which haveprogressively enriched the ISM with iron. However our data suggest thatthe star formation in the thick disk stopped when the enrichment was[Fe/H] =-0.30, [Mg/Fe] =+0.20, [Si/Fe] =+0.17. A vertical gradient in[α/Fe] may exist in the thick disk but should be confirmed with alarger sample. Finally we have identified 2 new candidates of the HR1614moving group.Based on spectra collected with the ELODIE spectrograph at the 1.93-mtelescope of the Observatoire de Haute Provence (France).Tables 3 and 8 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/551

Non-LTE Analysis of the Sodium Abundance of Metal-Poor Stars in the Galactic Disk and Halo
We performed an extensive non-LTE analysis of the neutral sodium linesof Na I 5683/5688, 5890/5896, 6154/6161, and 8183/8195 in disk/halostars of types F-K covering a wide metallicity range (-4 <≈[Fe/H] <≈ +0.4), using our own data as well as data collectedfrom the literature. For comparatively metal-rich disk stars (-1<≈ [Fe/H] <≈ +0.4) where the weaker 6154/6161 linesare the best abundance indicators, we confirmed [Na/Fe] ˜ 0 with an"upturn" (i.e., a shallow/broad dip around -0.5 <≈ [Fe/H]<≈ 0) as already reported in previous studies. For themetal-deficient halo stars, where the much stronger 5890/5896 or8183/8195 lines subject to considerable (negative) non-LTE correctionsamounting to 0.5 dex have to be used, our analysis suggests mildly"subsolar" [Na/Fe] values down to ˜ -0.4 (with a somewhat largescatter of ˜ ± 0.2 dex) on the average at the typical halometallicity of [Fe/H] ˜ -2, followed by a rise again to a near-solarratio of [Na/Fe] ˜ 0 at the very metal-poor regime [Fe/H] ˜ -3to -4. These results are discussed in comparison with the previousobservational studies along with the theoretical predictions from theavailable chemical evolution models.

Sodium Abundances in Stellar Atmospheres with Differing Metallicities
The non-LTE sodium abundances of 100 stars with metallicities-3<[Fe/H]<0.3 are determined using high-dispersion spectra withhigh signal-to-noise ratios. The sodium abundances [Na/Fe] obtained areclose to the solar abundance and display a smaller scatter than valuespublished previously. Giants (logg<3.8) with [Fe/H]<-1 do notdisplay overabundances of sodium, and their sodium abundances do notshow an anticorrelation with the oxygen abundance, in contrast toglobular-cluster giants. They likewise do not show sodium-abundancevariations with motion along the giant branch. No appreciable decreasein the sodium abundance was detected for dwarfs (logg>3.8) withmetallicities -2<[Fe/H]<-1. The observed relation between [Na/Fe]and [Fe/H] is in satisfactory agreement with the theoreticalcomputations of Samland, which take into account the metallicitydependence of the sodium yield and a number of other factors affectingthe distribution of elements in the Galaxy during the course of itsevolution.

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

High-Precision Near-Infrared Photometry of a Large Sample of Bright Stars Visible from the Northern Hemisphere
We present the results of 8 yr of infrared photometric monitoring of alarge sample of stars visible from Teide Observatory (Tenerife, CanaryIslands). The final archive is made up of 10,949 photometric measuresthrough a standard InSb single-channel photometer system, principally inJHK, although some stars have measures in L'. The core of this list ofstars is the standard-star list developed for the Carlos SánchezTelescope. A total of 298 stars have been observed on at least twooccasions on a system carefully linked to the zero point defined byVega. We present high-precision photometry for these stars. The medianuncertainty in magnitude for stars with a minimum of four observationsand thus reliable statistics ranges from 0.0038 mag in J to 0.0033 magin K. Many of these stars are faint enough to be observable with arraydetectors (42 are K>8) and thus to permit a linkage of the bright andfaint infrared photometric systems. We also present photometry of anadditional 25 stars for which the original measures are no longeravailable, plus photometry in L' and/or M of 36 stars from the mainlist. We calculate the mean infrared colors of main-sequence stars fromA0 V to K5 V and show that the locus of the H-K color is linearlycorrelated with J-H. The rms dispersion in the correlation between J-Hand H-K is 0.0073 mag. We use the relationship to interpolate colors forall subclasses from A0 V to K5 V. We find that K and M main-sequence andgiant stars can be separated on the color-color diagram withhigh-precision near-infrared photometry and thus that photometry canallow us to identify potential mistakes in luminosity classclassification.

Abundances for metal-poor stars with accurate parallaxes. I. Basic data
We present element-to-element abundance ratios measured from highdispersion spectra for 150 field subdwarfs and early subgiants withaccurate Hipparcos parallaxes (errors <20%). For 50 stars new spectrawere obtained with the UVES on Kueyen (VLT UT2), the McDonald 2.7 mtelescope, and SARG at TNG. Additionally, literature equivalent widthswere taken from the works by Nissen & Schuster, Fulbright, andProchaska et al. to complement our data. The whole sample includes boththick disk and halo stars (and a few thin disk stars); most stars havemetallicities in the range -2<[Fe/H]<-0.6. We found our data, thatof Nissen & Schuster, and that of Prochaska to be of comparablequality; results from Fulbright scatter a bit more, but they are stillof very good quality and are extremely useful due to the large size ofhis sample. The results of the present analysis will be used inforthcoming papers to discuss the chemical properties of thedissipational collapse and accretion components of our Galaxy.Based in part on data collected at the European Southern Observatory,Chile, at the MacDonald Observatory, Texas, USA, and at the TelescopioNazionale Galileo, Canary Island, INAF,Italy-Spain.}\fnmsep\thanks{Table 1 is only available in electronic format the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) orvia\resizebox{8.8cm}{2.2mm}htpp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/404/187}

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Hydra
Right ascension:08h58m43.90s
Declination:-16°07'58.0"
Apparent magnitude:5.86
Distance:21.322 parsecs
Proper motion RA:244.5
Proper motion Dec:213
B-T magnitude:6.43
V-T magnitude:5.871

Catalogs and designations:
Proper Names
HD 1989HD 76932
TYCHO-2 2000TYC 6014-255-1
USNO-A2.0USNO-A2 0675-09861274
BSC 1991HR 3578
HIPHIP 44075

→ Request more catalogs and designations from VizieR