Home     Getting Started     New Pictures     Picture of the Day     Blog New!     Login  

HD 310331


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Observational studies of Cepheid amplitudes. I. Period-amplitude relationships for Galactic Cepheids and interrelation of amplitudes
Context: The dependence of amplitude on the pulsation period differsfrom other Cepheid-related relationships. Aims: We attempt torevise the period-amplitude (P-A) relationship of Galactic Cepheidsbased on multi-colour photometric and radial velocity data. Reliable P-Agraphs for Galactic Cepheids constructed for the U, B, V, R_C, andIC photometric bands and pulsational radial velocityvariations facilitate investigations of previously poorly studiedinterrelations between observable amplitudes. The effects of bothbinarity and metallicity on the observed amplitude, and the dichotomybetween short- and long-period Cepheids can both be studied. Methods: A homogeneous data set was created that contains basicphysical and phenomenological properties of 369 Galactic Cepheids.Pulsation periods were revised and amplitudes were determined by theFourier method. P-A graphs were constructed and an upper envelope to thedata points was determined in each graph. Correlations between variousamplitudes and amplitude-related parameters were searched for, usingCepheids without known companions. Results: Large amplitudeCepheids with companions exhibit smaller photometric amplitudes onaverage than solitary ones, as expected, while s-Cepheids pulsate withan arbitrary (although small) amplitude. The ratio of the observedradial velocity to blue photometric amplitudes, AV_RAD/A_B,is not as good an indicator of the pulsation mode as predictedtheoretically. This may be caused by an incorrect mode assignment to anumber of small amplitude Cepheids, which are not necessarily firstovertone pulsators. The dependence of the pulsation amplitudes onwavelength is used to identify duplicity of Cepheids. More than twentystars previously classified as solitary Cepheids are now suspected tohave a companion. The ratio of photometric amplitudes observed invarious bands confirms the existence of a dichotomy among normalamplitude Cepheids. The limiting period separating short- andlong-period Cepheids is 10.47 days. Conclusions:Interdependences of pulsational amplitudes, the period dependence of theamplitude parameters, and the dichotomy have to be taken into account asconstraints in modelling the structure and pulsation of Cepheids.Studies of the P-L relationship must comply with the break at 10.47°instead of the currently used “convenient” value of 10 days.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/504/959

A new calibration of Galactic Cepheid period-luminosity relations from B to K bands, and a comparison to LMC relations
Context: The universality of the Cepheid period-luminosity (PL)relations has been under discussion since metallicity effects wereassumed to play a role in the value of the intercept and, more recently,of the slope of these relations. Aims: The goal of the present study isto calibrate the Galactic PL relations in various photometric bands(from B to K) and to compare the results to the well-established PLrelations in the LMC. Methods: We use a set of 59 calibrating stars,the distances of which are measured using five different distanceindicators: Hubble Space Telescope and revised Hipparcos parallaxes,infrared surface brightness and interferometric Baade-Wesselinkparallaxes, and classical Zero-Age-Main-Sequence-fitting parallaxes forCepheids belonging to open clusters or OB stars associations. A detaileddiscussion of absorption corrections and projection factor to be used isgiven. Results: We find no significant difference in the slopes of thePL relations between LMC and our Galaxy. Conclusions: We conclude thatthe Cepheid PL relations have universal slopes in all photometric bands,not depending on the galaxy under study (at least for LMC and MilkyWay). The possible zero-point variation with metal content is notdiscussed in the present work, but an upper limit of 18.50 for the LMCdistance modulus can be deduced from our data.Tables 2, 6 and 7 are only available in electronic form athttp://www.aanda.org

Cepheid parallaxes and the Hubble constant
Revised Hipparcos parallaxes for classical Cepheids are analysedtogether with 10 Hubble Space Telescope (HST)-based parallaxes. In areddening-free V, I relation we find that the coefficient of logP is thesame within the uncertainties in our Galaxy as in the Large MagellanicCloud (LMC), contrary to some previous suggestions. Cepheids in theinner region of NGC4258 with near solar metallicities confirm thisresult. We obtain a zero-point for the reddening-free relation and applyit to the Cepheids in galaxies used by Sandage et al. to calibrate theabsolute magnitudes of Type Ia supernova (SNIa) and to derive the Hubbleconstant. We revise their result for H0 from 62 to 70 +/-5kms-1Mpc-1. The Freedman et al. value is revisedfrom 72 to 76 +/- 8kms-1Mpc-1. These results areinsensitive to Cepheid metallicity corrections. The Cepheids in theinner region of NGC4258 yield a modulus of 29.22 +/- 0.03 (int.)compared with a maser-based modulus of 29.29 +/- 0.15. Distance modulifor the LMC, uncorrected for any metallicity effects, are 18.52 +/- 0.03from a reddening-free relation in V, I; 18.47 +/- 0.03 from aperiod-luminosity relation at K; 18.45 +/- 0.04 from aperiod-luminosity-colour relation in J, K. Adopting a metallicitycorrection in V, I from Macri et al. leads to a true LMC modulus of18.39 +/- 0.05.

The reliability of Cepheid reddenings based on BVIC photometry
Externally determined values of E(B - V) (Espacered) for 40Galactic Cepheids are compared to reddenings determined using B - V andV - IC colour indices and the method of Dean, Warren &Cousins (EBVIC), updated to allow for metallicitycorrections. With three stars omitted on the grounds of uncertainty intheir space reddenings, we find thatThe two scales agree well in scale and zero-point, and there is nosignificant trend with period. Given the non-zero errors in the Cepheidspace reddenings, the estimated error in BVIC Cepheidreddenings is no more than 0.02.The above results are not significantly changed whether one corrects thereddenings for metallicity using older Bell models, or using more recentmodels by Sandage, Bell & Tripicco. Using the SBT models to correctthe reddenings of Cloud Cepheids for metallicity gives slightly smallerreddenings at a given metal deficiency, yielding `new' median reddeningsof 0.056 (Small Magellanic Cloud) and 0.076 (Large Magellanic Cloud) ifwe assume the same metal deficiencies as Caldwell and Coulson. Withmetal deficiencies of [M/H] = -0.7 and -0.25, the median reddenings are0.040 and 0.058.

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

New Period-Luminosity and Period-Color relations of classical Cepheids: I. Cepheids in the Galaxy
321 Galactic fundamental-mode Cepheids with good B, V, and (in mostcases) I photometry by Berdnikov et al. (\cite{Berdnikov:etal:00}) andwith homogenized color excesses E(B-V) based on Fernie et al.(\cite{Fernie:etal:95}) are used to determine their period-color (P-C)relation in the range 0.4~ 1.4). The latter effect is enhanced by asuggestive break of the P-L relation of LMC and SMC at log P = 1.0towards still shallower values as shown in a forthcoming paper.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/404/423

Fundamental Parameters of Cepheids. V. Additional Photometry and Radial Velocity Data for Southern Cepheids
I present photometric and radial velocity data for Galactic Cepheids,most of them being in the southern hemisphere. There are 1250 Genevaseven-color photometric measurements for 62 Cepheids, the averageuncertainty per measurement is better than 0.01 mag. A total of 832velocity measurements have been obtained with the CORAVEL radialvelocity spectrograph for 46 Cepheids. The average accuracy of theradial velocity data is 0.38 km s-1. There are 33 stars withboth photometry and radial velocity data. I discuss the possiblebinarity or period change that these new data reveal. I also presentreddenings for all Cepheids with photometry. The data are availableelectronically. Based on observations obtained at the European SouthernObservatory, La Silla.

Photoelectric Observations of Southern Cepheids in 2001
A total of 2097 photometric observations in the BVIc systemare presented for 117 Cepheids located in the southern hemisphere. Themain purpose of the photometry is to provide new epochs of maximumbrightness for studying Cepheid period changes, as well as to establishcurrent light elements for the Cepheids.

Multiperiodicities from the Hipparcos epoch photometry and possible pulsation in early A-type stars
A selection criterion based on the relative strength of the largestpeaks in the amplitude spectra, and an information criterion are used incombination to search for multiperiodicities in Hipparcos epochphotometry. The method is applied to all stars which have beenclassified as variable in the Hipparcos catalogue: periodic, unsolvedand microvariables. Results are assessed critically: although there aremany problems arising from aliasing, there are also a number ofinteresting frequency combinations which deserve further investigation.One such result is the possible occurrence of multiple periods of theorder of a day in a few early A-type stars. The Hipparcos catalogue alsocontains a number of these stars with single periodicities: such starswith no obvious variability classifications are listed, and informationabout their properties (e.g., radial velocity variations) discussed.These stars may constitute a new class of pulsators.

Catalogue of Apparent Diameters and Absolute Radii of Stars (CADARS) - Third edition - Comments and statistics
The Catalogue, available at the Centre de Données Stellaires deStrasbourg, consists of 13 573 records concerning the results obtainedfrom different methods for 7778 stars, reported in the literature. Thefollowing data are listed for each star: identifications, apparentmagnitude, spectral type, apparent diameter in arcsec, absolute radiusin solar units, method of determination, reference, remarks. Commentsand statistics obtained from CADARS are given. The Catalogue isavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcar?J/A+A/367/521

Stars with the Largest Hipparcos Photometric Amplitudes
A list of the 2027 stars that have the largest photometric amplitudes inHipparcos Photometry shows that most variable stars are all Miras. Thepercentage of variable types change as a function of amplitude. Thiscompilation should also be of value to photometrists looking forrelatively unstudied, but large amplitude stars.

Galactic Cepheids. Catalogue of light-curve parameters and distances
We report a new version of the catalogue of distances and light-curveparameters for Galactic classical Cepheids. The catalogue listsamplitudes, magnitudes at maximum light, and intensity means for 455stars in BVRI filters of the Johnson system and (RI)_C filters of theCron-Cousins system. The distances are based on our new multicolour setof PL relations and on our Cepheid-based solution for interstellarextinction law parameters and are referred to an LMC distance modulus of18.25. The catalogue is only available in electronic form at the CDS viaanonymous ftp (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Multi-colour PL-relations of Cepheids in the bt HIPPARCOS catalogue and the distance to the LMC
We analyse a sample of 236 Cepheids from the hipparcos catalog, usingthe method of ``reduced parallaxes'' in V, I, K and the reddening-free``Wesenheit-index''. We compare our sample to those considered by Feast& Catchpole (1997) and Lanoix et al. (1999), and argue that oursample is the most carefully selected one with respect to completeness,the flagging of overtone pulsators, and the removal of Cepheids that mayinfluence the analyses for various reasons (double-mode Cepheids,unreliable hipparcos solutions, possible contaminated photometry due tobinary companions). From numerical simulations, and confirmed by theobserved parallax distribution, we derive a (vertical) scale height ofCepheids of 70 pc, as expected for a population of 3-10 Msunstars. This has consequences for Malmquist- and Lutz-Kelker (Lutz &Kelker 1973, Oudmaijer et al. 1998) type corrections which are smallerfor a disk population than for a spherical population. The V and I datasuggest that the slope of the Galactic PL-relations may be shallowerthan that observed for LMC Cepheids, either for the whole period range,or that there is a break at short periods (near log P_0 ~ 0.7-0.8). Westress the importance of two systematic effects which influence thedistance to the LMC: the slopes of the Galactic PL-relations andmetallicity corrections. In order to assess the influence of thesevarious effects, we present 27 distance moduli (DM) to the LMC. Theseare based on three different colours (V,I,K), three different slopes(the slope observed for Cepheids in the LMC, a shallower slope predictedfrom one set of theoretical models, and a steeper slope as derived forGalactic Cepheids from the surface-brightness technique), and threedifferent metallicity corrections (no correction as predicted by one setof theoretical models, one implying larger DM as predicted by anotherset of theoretical models, and one implying shorter DM based onempirical evidence). We derive DM between 18.45 +/- 0.18 and 18.86 +/-0.12. The DM based on K are shorter than those based on V and I andrange from 18.45 +/- 0.18 to 18.62 +/- 0.19, but the DM in K could besystematically too low by about 0.1 magnitude because of a bias due tothe fact that NIR photometry is available only for a limited number ofstars. From the Wesenheit-index we derive a DM of 18.60 +/- 0.11,assuming the observed slope of LMC Cepheids and no metallicitycorrection, for want of more information. The DM to the LMC based on theparallax data can be summarised as follows. Based on the PL-relation inV and I, and the Wesenheit-index, the DM is 18.60 ± 0.11(± 0.08 slope)(^{+0.08}_{-0.15} ;metallicity), which is ourcurrent best estimate. Based on the PL-relation in K the DM is ;;;;18.52 +/- 0.18 (± 0.03 ;slope) (± 0.06 ;metallicity)(^{+0.10}_{-0} ;sampling ;bias). The random error is mostly due to thegiven accuracy of the hipparcos parallaxes and the number of Cepheids inthe respective samples. The terms between parentheses indicate thepossible systematic uncertainties due to the slope of the GalacticPL-relations, the metallicity corrections, and in the K-band, due to thelimited number of stars. Recent work by Sandage et al. (1999) indicatesthat the effect of metallicity towards shorter distances may be smallerin V and I than indicated here. From this, we point out the importanceof obtaining NIR photometry for more (closeby) Cepheids, as for themoment NIR photometry is only available for 27% of the total sample.This would eliminate the possible bias due to the limited number ofstars, and would reduce the random error estimate from 0.18 to about0.10 mag. Furthermore, the sensitivity of the DM to reddening,metallicity correction and slope are smallest in the K-band. Based ondata from the ESA HP astrometry satellite.

Direct calibration of the Cepheid period-luminosity relation
After the first release of Hipparcos data, Feast & Catchpole gave anew value for the zero-point of the visual Cepheid period-luminosityrelation, based on trigonometric parallaxes. Because of the largeuncertainties on these parallaxes, the way in which individualmeasurements are weighted is of crucial importance. We thereforeconclude that the choice of the best weighting system can be aided by aMonte Carlo simulation. On the basis of such a simulation, it is shownthat (i) a cut-off in π or in σ_ππ introduces a strongbias; (ii) the zero-point is more stable when only the brightestCepheids are used; and (iii) the Feast & Catchpole weighting givesthe best zero-point and the lowest dispersion. After correction, theadopted visual period-luminosity relation is=-2.77logP-1.44+/-0.05. Moreover, we extend this study to thephotometric I band (Cousins) and obtain=-3.05logP-1.81+/-0.09.

I- and JHK-band photometry of classical Cepheids in the HIPPARCOS catalog
By correlating the \cite[Fernie et al. (1995)]{F95} electronic databaseon Cepheids with the ``resolved variable catalog'' of the hipparcosmission and the simbad catalog one finds that there are 280 Cepheids inthe hipparcos catalog. By removing W Vir stars (Type ii Cepheids),double-mode Cepheids, Cepheids with an unreliable solution in thehipparcos catalog, and stars without photometry, it turns out that thereare 248 classical Cepheids left, of which 32 are classified asfirst-overtone pulsators. For these stars the literature was searchedfor I-band and near-infrared data. Intensity-mean I-band photometry onthe Cousins system is derived for 189 stars, and intensity-mean JHK dataon the Carter system is presented for 69 stars.

The shape and scale of Galactic rotation from Cepheid kinematics
A catalog of Cepheid variables is used to probe the kinematics of theGalactic disk. Radial velocities are measured for eight distant Cepheidstoward l = 300 deg; these new Cepheids provide a particularly goodconstraint on the distance to the Galactic center, R0. We model the diskwith both an axisymmetric rotation curve and one with a weak ellipticalcomponent, and find evidence for an ellipticity of 0.043 +/- 0.016 nearthe sun. Using these models, we derive R0 = 7.66 +/- 0.32 kpc andv(circ) = 237 +/- 12 km/s. The distance to the Galactic center agreeswell with recent determinations from the distribution of RR Lyraevariables and disfavors most models with large ellipticities at thesolar orbit.

Galactic kinematics of Cepheids from HIPPARCOS proper motions
The Hipparcos proper motions of 220 Galactic Cepheids, together withrelevant ground-based photometry, have been analyzed. The effects ofGalactic rotation are very clearly seen. Mean values of the Oortconstants, A = 14.82 +/- 0.84 km/s kpc, and B = -12.37 +/- 0.64 km/skpc, and of the angular velocity of circular rotation at the sun, 27.19+/- 0.87 km/s kpc, are derived. A comparison of the value of A withvalues derived from recent radial velocity solutions confirms, withinthe errors, the zero-points of the period-luminosity andperiod-luminosity-color relations derived directly from the Hipparcostrigonometrical parallaxes of the same stars. The proper motion resultssuggest that the Galactic rotation curve is declining slowly at thesolar distance from the Galactic Center (-2.4 +/- 1.2 km/s kpc). Thecomponent of the solar motion towards the North Galactic Pole is foundto be +7.61 +/- 0.64 km/s. Based on the increased distance scale deducedin the present paper, the distance to the Galactic Center derived in aprevious radial velocity study is increased to 8.5 +/- 0.5 kpc.

Search for resonance effects in long period Cepheids.
Light curves of classical Cepheids with period longer than 8 days havebeen Fourier decomposed with the purpose of studying the characteristicsof high order Fourier parameters, and to detect possible effects ofresonances between pulsation modes other than the well known resonanceat P~10d. The possible effects of two expected resonances have beententatively identified: P_0_/P_1_=3/2 at P_0_~24 d and P_0_/P_3_=3 atP_0_~27d. The identification is not completely certain owing to the poornumber of Cepheids. The limitation could be overcome by observingaccurately other relatively faint Cepheids in our Galaxy, and severalCepheids in nearby galaxies.

Derivation of the Galactic rotation curve using space velocities
We present rotation curves of the Galaxy based on the space-velocitiesof 197 OB stars and 144 classical cepheids, respectively, which rangeover a galactocentric distance interval of about 6 to 12kpc. Nosignificant differences between these rotation curves and rotationcurves based solely on radial velocities assuming circular rotation arefound. We derive an angular velocity of the LSR of{OMEGA}_0_=5.5+/-0.4mas/a (OB stars) and {OMEGA}_0_=5.4+/-0.5mas/a(cepheids), which is in agreement with the IAU 1985 value of{OMEGA}_0_=5.5mas/a. If we correct for probable rotations of the FK5system, the corresponding angular velocities are {OMEGA}_0_=6.0mas/a (OBstars) and {OMEGA}_0_=6.2mas/a (cepheids). These values agree betterwith the value of {OMEGA}_0_=6.4mas/a derived from the VLA measurementof the proper motion of SgrA^*^.

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

Rotation Curve of the System of Classical Cepheids and the Distance to the Galactic Center
Not Available

The Henry Draper Extension Charts: A catalogue of accurate positions, proper motions, magnitudes and spectral types of 86933 stars
The Henry Draper Extension Charts (HDEC), published in the form offinding charts, provide spectral classification for some 87000 starsmostly between 10th and 11th magnitude. This data, being highlyvaluable, as yet was practically unusable for modern computer-basedastronomy. An earlier pilot project (Roeser et al. 1991) demonstrated apossibility to convert this into a star catalogue, using measurements ofcartesian coordinates of stars on the charts and positions of theAstrographic Catalogue (AC) for subsequent identification. We presenthere a final HDEC catalogue comprising accurate positions, propermotions, magnitudes and spectral classes for 86933 stars of the HenryDraper Extension Charts.

New radial velocities for classical cepheids. Local galactic rotation revisited
New centre-of-mass radial velocities are calculated for 107 classicalcepheids from CORAVEL observations. We generally determine thesevelocities from four to six measurements carefully spaced in phase, byfitting a "typical" radial velocity curve or the mirror image of thelight curve. A decomposition in Fourier series is used for stars withmore than 10 measurements. Distances are then computed through aperiod-luminosity-colour relation for 278 classical cepheids with knownradial velocity, and an axisymmetric galactic rotation model is appliedto the sample, using a generalised non-linear least square method withuncertainties on both the velocities and the distances. The bestresults, with a rotation curve modelled as a third order polynomial,are: Rsun_=8.09 +/-0.30 kpc, A=15.92 +/-0.34 km/s/kpc, 2ARsun_=257 +/-7 km/s, A2=d^2theta(R)/d R^2^=-3.38+/-0.38 km/s/kpc^2^, A3=d^3theta(R)/d R^3^=1.99 +/-0.62km/s/kpc^3^, u_0_=9.32 +/-0.80 km/s, v_0_=11.18 +/-0.65 km/s. The effectof modifying the distance scale of cepheids, the absorption coefficientor the fitting procedure algorithm are examined. It appears that theproduct 2 A Rsun_ is very robust towards these changes. Theextended sample of classical cepheids with known radial velocitypresented in this paper seems to imply a higher value for A thananterior studies. The radial velocity residuals show a systematic k-termof about 2 km/s. New evidence from cluster cepheids excludes anintrinsic cause for this shift, and a dynamical cause is proposed from acomparison with a N-body simulation of the Galaxy. The simulation showsthat a systematic bias of this magnitude is typical. The structure ofthe local residual velocity field is examined in some detail.

The Cepheid Period-Luminosity Relation from Independent Distances of 100 Galactic Variables
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1993ApJ...418..135G&db_key=AST

The structure of the Cepheid instability strip
About 100 classical Cepheids having color excesses on a homogeneoussystem with standard errors of 0.02 or less mag are used with theFeast-Walker period-luminosity-color relation to study the distributionof such stars in the instability strip. It is found that mean (B-V)magis a better indicator of mean effective temperature than is mean B(i) -mean V(i)(i). The blue edge of the color-magnitude distribution isconsistent with the theoretical blue edge for Y = 0.28 and Z = 0.02.Although the highest amplitude stars are found near the center of theperiod-color array, high- and low-amplitude stars can intermingle, andboth kinds are to be found near the edges of the distribution. The sameis true on the C-M array. Finally, it is pointed out that the Cepheidsdo not populate the instability strip uniformly if the red edge is takento be parallel to the theoretical blue edge. Rather, the localinstability region runs as a parallelogram in the C-M array from thetheoretical blue edge upward and to the red.

Cepheid radial velocity curves revisited
Existing radial velocity data of 57 type I Galactic Cepheids areanalyzed to study the systematic variation of their Fourierdecomposition with the period. All important features (including thebump progression) of the radial velocity variation are described bylow-order (third-order to fifth-order) Fourier decompositions. The dataare in fair agreement with the recent hydrodynamic results, whichimplies that the 2:1 resonance between the fundamental and secondovertone modes is the most important factor in the shaping of the radialvelocity curves. The highest quality data of this sample suggest a verytight progression of the Fourier coefficients, which indicates strictconstraints on the physical parameters or on the evolutionary history ofCepheids.

Color Excesses on a Uniform Scale for 328 Cepheids
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1990ApJS...72..153F&db_key=AST

Towards a reconciliation of Cepheid masses
A new set of homogeneous Wesselink masses for 101 classical Cepheids isderived, as well as new evolution and pulsation masses for a subset of52 stars with known luminosities. A detailed comparison and discussionof the different mass determinations shows that, within theuncertainties inherent in each of the methods, there is satisfactoryagreement over the entire range of Cepheid pulsation periods. Inparticular, there is very good agreement among the evolution andWesselink masses. Theoretical masses of Cepheids as defined by Cox showreasonable agreement with the evolution masses.

The period-radius relation for classical Cepheids from the visual surface brightness technique
Surface brightnesses have been obtained for 52 southern Cepheids and 63northern Cepheids using the (V-R) color index. A period-radius relation(in the period range of 3-45 days) of log R = 1.108 + or - 0.743 log Pis obtained, with uncertainties of + or - 0.023 in the zero point andslope. The influence of unresolved binaries and possible overtonepulsators on this relation is considered. The present period-radiusrelation is shown to be consistent with current determinations ofdistances and effective temperature scales for classical Cepheids. Noevidence is found to support the contention that all shorter periodCepheids are overtone pulsators.

The Galactic Cepheid period-luminosity relation from the visual surface brightness method
The distances of 52 southern hemisphere Galactic Cepheids covering aperiod range of 3 to 40 days are determined using the visual surfacebrightness method (VSBM). Absolute magnitudes of these stars arecalculated, and a period-luminosity relation of small dispersion isobtained which is based on twice as many Cepheids as any formercalibration. Essential agreement is found between the surface brightnessand the ZAMS-fitting distance scale of Caldwell and Coulson (1987).Cepheid absolute magnitudes based on Stro["!mgren photometry of opencluster B stars are on average 0.2 mag fainter than these scales.Advantages and drawbacks of the present version of the VSBM arediscussed, and it is concluded that its present degree of refinement isadequate to determine the Cepheid luminosity zero point to better than0.2 mag. The slope of the visual surface brightness-color relation validfor Cepheids has now been established to a high degree of confidence.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Carina
Right ascension:10h57m09.22s
Declination:-65°08'05.1"
Apparent magnitude:9.44
Proper motion RA:-4.2
Proper motion Dec:1.8
B-T magnitude:10.774
V-T magnitude:9.551

Catalogs and designations:
Proper Names
HD 1989HD 310331
TYCHO-2 2000TYC 8966-1083-1
USNO-A2.0USNO-A2 0225-09969098
HIPHIP 53536

→ Request more catalogs and designations from VizieR