Home     Getting Started     New Pictures     Picture of the Day     Blog New!     Login  

HD 29246 (Garrison Motherfucking Heinfeldt )


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Improvement of Hipparcos Proper Motions in Declination
More than a decade elapsed after the HIPPARCOS ESA mission (ESA 1997)observations have been collected. This first astronomical satellitemission was less than 4 years long so that 1991.25 is the epoch of theHIPPARCOS Catalogue. Many other projects have checked or improvedHIPPARCOS data. Also, a long series of ground - based opticalobservations of some stars included in HIPPARCOS Catalogue, made withPhotographic Zenith Tubes (PZT) are useful for the task of improving theproper motions of these stars. The ARIHIP Catalogue (after ACT, TYCHO -2, FK6, GC+HIP, TYC2+HIP) is a combination of the HIPPARCOS and someground - based data, and the ARIHIP proper motions are more accuratethan the HIPPARCOS ones. Here we present a new step of our procedure ofcalculation; between PZT data we added the HIPPARCOS position withsuitable weight - the point with the coordinates (1991.25, 0ŭ0)in our case. The method was applied to 202 stars observed at RichmondPZTs in the course of a few decades. The result is better proper motionsin declination for these HIPPARCOS stars, and a good agreement withARIHIP proper motions (we found 128 common Richmond and ARIHIP stars tocheck our result). Also, we present the result for other 74 Richmondstars which are not found in ARIHIP.

Local kinematics of K and M giants from CORAVEL/Hipparcos/Tycho-2 data. Revisiting the concept of superclusters
The availability of the Hipparcos Catalogue has triggered many kinematicand dynamical studies of the solar neighbourhood. Nevertheless, thosestudies generally lacked the third component of the space velocities,i.e., the radial velocities. This work presents the kinematic analysisof 5952 K and 739 M giants in the solar neighbourhood which includes forthe first time radial velocity data from a large survey performed withthe CORAVEL spectrovelocimeter. It also uses proper motions from theTycho-2 catalogue, which are expected to be more accurate than theHipparcos ones. An important by-product of this study is the observedfraction of only 5.7% of spectroscopic binaries among M giants ascompared to 13.7% for K giants. After excluding the binaries for whichno center-of-mass velocity could be estimated, 5311 K and 719 M giantsremain in the final sample. The UV-plane constructed from these datafor the stars with precise parallaxes (σπ/π≤20%) reveals a rich small-scale structure, with several clumpscorresponding to the Hercules stream, the Sirius moving group, and theHyades and Pleiades superclusters. A maximum-likelihood method, based ona Bayesian approach, has been applied to the data, in order to make fulluse of all the available stars (not only those with precise parallaxes)and to derive the kinematic properties of these subgroups. Isochrones inthe Hertzsprung-Russell diagram reveal a very wide range of ages forstars belonging to these groups. These groups are most probably relatedto the dynamical perturbation by transient spiral waves (as recentlymodelled by De Simone et al. \cite{Simone2004}) rather than to clusterremnants. A possible explanation for the presence of younggroup/clusters in the same area of the UV-plane is that they have beenput there by the spiral wave associated with their formation, while thekinematics of the older stars of our sample has also been disturbed bythe same wave. The emerging picture is thus one of dynamical streamspervading the solar neighbourhood and travelling in the Galaxy withsimilar space velocities. The term dynamical stream is more appropriatethan the traditional term supercluster since it involves stars ofdifferent ages, not born at the same place nor at the same time. Theposition of those streams in the UV-plane is responsible for the vertexdeviation of 16.2o ± 5.6o for the wholesample. Our study suggests that the vertex deviation for youngerpopulations could have the same dynamical origin. The underlyingvelocity ellipsoid, extracted by the maximum-likelihood method afterremoval of the streams, is not centered on the value commonly acceptedfor the radial antisolar motion: it is centered on < U > =-2.78±1.07 km s-1. However, the full data set(including the various streams) does yield the usual value for theradial solar motion, when properly accounting for the biases inherent tothis kind of analysis (namely, < U > = -10.25±0.15 kms-1). This discrepancy clearly raises the essential questionof how to derive the solar motion in the presence of dynamicalperturbations altering the kinematics of the solar neighbourhood: doesthere exist in the solar neighbourhood a subset of stars having no netradial motion which can be used as a reference against which to measurethe solar motion?Based on observations performed at the Swiss 1m-telescope at OHP,France, and on data from the ESA Hipparcos astrometry satellite.Full Table \ref{taba1} is only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/430/165}

Classification of Spectra from the Infrared Space Observatory PHT-S Database
We have classified over 1500 infrared spectra obtained with the PHT-Sspectrometer aboard the Infrared Space Observatory according to thesystem developed for the Short Wavelength Spectrometer (SWS) spectra byKraemer et al. The majority of these spectra contribute to subclassesthat are either underrepresented in the SWS spectral database or containsources that are too faint, such as M dwarfs, to have been observed byeither the SWS or the Infrared Astronomical Satellite Low ResolutionSpectrometer. There is strong overall agreement about the chemistry ofobjects observed with both instruments. Discrepancies can usually betraced to the different wavelength ranges and sensitivities of theinstruments. Finally, a large subset of the observations (~=250 spectra)exhibit a featureless, red continuum that is consistent with emissionfrom zodiacal dust and suggest directions for further analysis of thisserendipitous measurement of the zodiacal background.Based on observations with the Infrared Space Observatory (ISO), aEuropean Space Agency (ESA) project with instruments funded by ESAMember States (especially the Principle Investigator countries: France,Germany, Netherlands, and United Kingdom) and with the participation ofthe Institute of Space and Astronautical Science (ISAS) and the NationalAeronautics and Space Administration (NASA).

1-4 Micron Spectrophotometry of Dust in the Taurus Dark Cloud: Water Ice Distribution in Heiles Cloud 2
We have conducted near infrared spectroscopy of 61 background starstoward Heiles Cloud 2 in the Taurus molecular cloud complex. We used alow-dispersion spectrometer, PASP2, which can simultaneously obtain thespectrum with a wavelength coverage between 1.3 and 4.2 μm. For 56 of61 objects, the visual extinction (AV) and theoptical depth of water ice at λ=3.1 μm (τICE)have been estimated: for 50 of 56 objects, these were systematicallyestimated from our data only. In order to investigate the water icedistribution in Heiles Cloud 2, we have constructed a ``water ice map''in which τICE is plotted at the position of each object.The water ice map is then compared with the C18O (J=1-0) mapobtained by millimeter observations performed by Sunada & Kitamura.We find that the distribution of water ice is closely correlated withthat of C18O. Strong water ice absorption is seen only towardthe dense C18O clumps, while less water ice absorption isdetected toward the outer region of the cloud. There is anAV threshold for the positive ice detection(AV0), as suggested by previous observations, but with asignificant scatter; AV0=2-5 mag. The scatter might be causedby the different contribution of the inner water-containing portion ofthe cloud along the line of sight. The value of τICEincreases with increasing of AV and the slope ofΔτICE/ΔAV is 0.067,consistent with the previously observed values for the Taurus molecularcloud.

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

Magnetic field structure in the Taurus dark cloud
Optical and infrared polarimetry of sources in the direction of theTaurus cloud are obtained in order to study the magnetic field in thiscloud and its possible role in the cloud's evolution. Most of the starsare background giant stars whose light shines through the cloud and ispolarized by the cloud material. The transverse component of themagnetic field, as delineated by the polarization vectors, is generallyperpendicular to the galactic plane, and the stratified structure of thecloud could be due to the effect of the magnetic field during the earlystages of collapse. Three of the 13 embedded stars are stronglypolarized with position angles nearly perpendicular to those of nearbyfield stars. The polarization of these stars is most likely intrinsic,and the direction of polarization indicates that the materialsurrounding these stars may be magnetic i.e., that the magnetic field isfrozen in this material.

Observations of active chromosphere stars
It is pointed out that spectroscopic signatures of stellar chromosphericactivity are readily observable. The present study is concerned with newphotometric and spectroscopic observations of active-chromosphere RSCVn, BY Dra, and FK Com stars. Attention is given to the first resultsof a synoptic monitoring program of many active chromosphere stars.During the time from 1980 to 1982, photometric and spectroscopicobservations of 10 known or suspected active-chromosphere objects weremade. The results regarding the individual stars are discussed. Sevenstars observed with the International Ultraviolet Explorer (IUE) are allspectroscopic binaries.

Polarimetric investigation of background stars in the region of T and RY Tau
Electropolarimetric observations of 97 background stars in the TTauri/RY Tauri region, obtained with the 40-cm Cassegrain telescope ofthe Biurakan Astrophysical Observatory in December 1982, are reportedand interpreted in terms of local-magnetic-field effects oncometary-nebula bending. The data are presented in a table, and thedependence of polarization position angle on declination is establishedin a graph and attributed to a continuous variation in the direction ofthe magnetic field. From the magnitude of the effect, however, it isconcluded that the observed bending of the cometary nebulae in theregion results from the combined influence of the local magnetic momentand the magnetic moment of the star itself (as proposed by Vardanian,1983) rather than from the local moment alone.

Interstellar extinction in the dark Taurus clouds. I
The results of photoelectric photometry of 74 stars in the Vilniusseven-color system in the area of Taurus dark clouds with coordinates(1950) 4h20m-4h48m +24.5 deg to +27 deg are presented. Photometricspectral types, absolute magnitudes, color excesses, interstellarextinctions and distances of the stars are determined. The dark cloudKhavtassi 286, 278 and the surrounding absorbing nebulae are found toextend from 140 to 175 pc from the sun. The average interstellarextinction on both sides of the dark cloud is of the order of 1.5m. Noevidence of the existence of several absorbing clouds situated atvarious distances is found.

UBV Photometry of 173 PZT Stars
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1971PASP...83..177W&db_key=AST

Photoelectric photometry of selected AG stars in the 25D to 30D zone.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1968AJ.....73..187B&db_key=AST

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Taurus
Right ascension:04h37m24.59s
Declination:+25°43'38.5"
Apparent magnitude:7.522
Distance:181.818 parsecs
Proper motion RA:28.2
Proper motion Dec:-29.7
B-T magnitude:9.228
V-T magnitude:7.663

Catalogs and designations:
Proper NamesGarrison Motherfucking Heinfeldt
HD 1989HD 29246
TYCHO-2 2000TYC 1834-227-1
USNO-A2.0USNO-A2 1125-01709108
HIPHIP 21532

→ Request more catalogs and designations from VizieR