시작하기     새 그림     오늘의사진     Blog New!     로그인  

HD 2342 (AQ And)


내용

사진

사진 업로드

DSS Images   Other Images


관련 글

CHARM2: An updated Catalog of High Angular Resolution Measurements
We present an update of the Catalog of High Angular ResolutionMeasurements (CHARM, Richichi & Percheron \cite{CHARM}, A&A,386, 492), which includes results available until July 2004. CHARM2 is acompilation of direct measurements by high angular resolution methods,as well as indirect estimates of stellar diameters. Its main goal is toprovide a reference list of sources which can be used for calibrationand verification observations with long-baseline optical and near-IRinterferometers. Single and binary stars are included, as are complexobjects from circumstellar shells to extragalactic sources. The presentupdate provides an increase of almost a factor of two over the previousedition. Additionally, it includes several corrections and improvements,as well as a cross-check with the valuable public release observationsof the ESO Very Large Telescope Interferometer (VLTI). A total of 8231entries for 3238 unique sources are now present in CHARM2. Thisrepresents an increase of a factor of 3.4 and 2.0, respectively, overthe contents of the previous version of CHARM.The catalog is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/431/773

The mass loss of C-rich giants
The mass loss rates, expansion velocities and dust-to-gas density ratiosfrom millimetric observations of 119 carbon-rich giants are compared, asfunctions of stellar parameters, to the predictions of recenthydrodynamical models. Distances and luminosities previously estimatedfrom HIPPARCOS data, masses from pulsations and C/O abundance ratiosfrom spectroscopy, and effective temperatures from a new homogeneousscale, are used. Predicted and observed mass loss rates agree fairlywell, as functions of effective temperature. The signature of the massrange M≤4 Mȯ of most carbon-rich AGB stars is seenas a flat portion in the diagram of mass loss rate vs. effectivetemperature. It is flanked by two regions of mass loss rates increasingwith decreasing effective temperature at nearly constant stellar mass.Four stars with detached shells, i.e. episodic strong mass loss, andfive cool infrared carbon-rich stars with optically-thick dust shells,have mass loss rates much larger than predicted values. The latter(including CW Leo) could be stars of smaller masses (M≃ 1.5-2.5Mȯ) while M≃ 4 Mȯ is indicated formost of the coolest objects. Among the carbon stars with detachedshells, R Scl returned to a predicted level (16 times lower) accordingto recent measurements of the central source. The observed expansionvelocities are in agreement with the predicted velocities at infinity ina diagram of velocities vs. effective temperature, provided the carbonto oxygen abundance ratio is 1≤ɛ C/ɛO≤2, i.e. the range deduced from spectra and modelatmospheres of those cool variables. Five stars with detached shellsdisplay expansion velocities about twice that predicted at theireffective temperature. Miras and non-Miras do populate the same locus inboth diagrams at the present accuracy. The predicted dust-to-gas densityratios are however about 2.2 times smaller than the values estimatedfrom observations. Recent drift models can contribute to minimize thediscrepancy since they include more dust. Simple approximate formulaeare proposed.This research has made use of the Simbad database operated at CDS.Partially based on data from the ESA HIPPARCOS astrometry satellite.Table 3 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/429/235

Beobachtungssergebnisse Bundesdeutsche Arbeitsgemeinschaft fuer Veraenderliche Sterne e.V.
Not Available

Beobachtungsergebnisse Bundesdeutsche Arbeitsgemeinschaft fur Veranderlichen Serne e.V.
Not Available

Reprocessing the Hipparcos data of evolved stars. III. Revised Hipparcos period-luminosity relationship for galactic long-period variable stars
We analyze the K band luminosities of a sample of galactic long-periodvariables using parallaxes measured by the Hipparcos mission. Theparallaxes are in most cases re-computed from the Hipparcos IntermediateAstrometric Data using improved astrometric fits and chromaticitycorrections. The K band magnitudes are taken from the literature andfrom measurements by COBE, and are corrected for interstellar andcircumstellar extinction. The sample contains stars of several spectraltypes: M, S and C, and of several variability classes: Mira, semiregularSRa, and SRb. We find that the distribution of stars in theperiod-luminosity plane is independent of circumstellar chemistry, butthat the different variability types have different P-L distributions.Both the Mira variables and the SRb variables have reasonablywell-defined period-luminosity relationships, but with very differentslopes. The SRa variables are distributed between the two classes,suggesting that they are a mixture of Miras and SRb, rather than aseparate class of stars. New period-luminosity relationships are derivedbased on our revised Hipparcos parallaxes. The Miras show a similarperiod-luminosity relationship to that found for Large Magellanic CloudMiras by Feast et al. (\cite{Feast-1989:a}). The maximum absolute Kmagnitude of the sample is about -8.2 for both Miras and semi-regularstars, only slightly fainter than the expected AGB limit. We show thatthe stars with the longest periods (P>400 d) have high mass lossrates and are almost all Mira variables.Based on observations from the Hipparcos astrometric satellite operatedby the European Space Agency (ESA \cite{Hipparcos}).Table \ref{Tab:data1} is only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/403/993

How many Hipparcos Variability-Induced Movers are genuine binaries?
Hipparcos observations of some variable stars, and especially oflong-period (e.g. Mira) variables, reveal a motion of the photocentercorrelated with the brightness variation (variability-induced mover -VIM), suggesting the presence of a binary companion. A re-analysis ofthe Hipparcos photometric and astrometric data does not confirm the VIMsolution for 62 among the 288 VIM objects (21%) in the Hipparcoscatalogue. Most of these 288 VIMs are long-period (e.g. Mira) variables(LPV). The effect of a revised chromaticity correction, which accountsfor the color variations along the light cycle, was then investigated.It is based on ``instantaneous'' V-I color indices derived fromHipparcos and Tycho-2 epoch photometry. Among the 188 LPVs flagged asVIM in the Hipparcos catalogue, 89 (47%) are not confirmed as VIM afterthis improved chromaticity correction is applied. This dramatic decreasein the number of VIM solutions is not surprising, since the chromaticitycorrection applied by the Hipparcos reduction consortia was based on afixed V-I color. Astrophysical considerations lead us to adopt a morestringent criterion for accepting a VIM solution (first-kind risk of0.27% instead of 10% as in the Hipparcos catalogue). With this moresevere criterion, only 27 LPV stars remain VIM, thus rejecting 161 ofthe 188 (86%) of the LPVs defined as VIMs in the Hipparcos catalogue.Based on observations from the Hipparcos astrometric satellite operatedby the European Space Agency (ESA 1997).Table 1 is also available in electronic form at the CDS, via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/399/1167

Hipparcos red stars in the HpV_T2 and V I_C systems
For Hipparcos M, S, and C spectral type stars, we provide calibratedinstantaneous (epoch) Cousins V - I color indices using newly derivedHpV_T2 photometry. Three new sets of ground-based Cousins V I data havebeen obtained for more than 170 carbon and red M giants. These datasetsin combination with the published sources of V I photometry served toobtain the calibration curves linking Hipparcos/Tycho Hp-V_T2 with theCousins V - I index. In total, 321 carbon stars and 4464 M- and S-typestars have new V - I indices. The standard error of the mean V - I isabout 0.1 mag or better down to Hp~9 although it deteriorates rapidly atfainter magnitudes. These V - I indices can be used to verify thepublished Hipparcos V - I color indices. Thus, we have identified ahandful of new cases where, instead of the real target, a random fieldstar has been observed. A considerable fraction of the DMSA/C and DMSA/Vsolutions for red stars appear not to be warranted. Most likely suchspurious solutions may originate from usage of a heavily biased color inthe astrometric processing.Based on observations from the Hipparcos astrometric satellite operatedby the European Space Agency (ESA 1997).}\fnmsep\thanks{Table 7 is onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/397/997

s-Process Nucleosynthesis in Carbon Stars
We present the first detailed and homogeneous analysis of the s-elementcontent in Galactic carbon stars of N type. Abundances of Sr, Y, Zr(low-mass s-elements, or ls), Ba, La, Nd, Sm, and Ce (high-masss-elements, or hs) are derived using the spectral synthesis techniquefrom high-resolution spectra. The N stars analyzed are of nearly solarmetallicity and show moderate s-element enhancements, similar to thosefound in S stars, but smaller than those found in the only previoussimilar study (Utsumi 1985), and also smaller than those found insupergiant post-asymptotic giant branch (post-AGB) stars. This is inagreement with the present understanding of the envelope s-elementenrichment in giant stars, which is increasing along the spectralsequence M-->MS-->S-->SC-->C during the AGB phase. Wecompare the observational data with recent s-process nucleosynthesismodels for different metallicities and stellar masses. Good agreement isobtained between low-mass AGB star models (M<~3 Msolar)and s-element observations. In low-mass AGB stars, the13C(α, n)16O reaction is the main source ofneutrons for the s-process a moderate spread, however, must exist in theabundance of 13C that is burnt in different stars. Bycombining information deriving from the detection of Tc, the infraredcolors, and the theoretical relations between stellar mass, metallicity,and the final C/O ratio, we conclude that most (or maybe all) of the Nstars studied in this work are intrinsic, thermally pulsing AGB stars;their abundances are the consequence of the operation of third dredge-upand are not to be ascribed to mass transfer in binary systems.

Carbon-rich giants in the HR diagram and their luminosity function
The luminosity function (LF) of nearly 300 Galactic carbon giants isderived. Adding BaII giants and various related objects, about 370objects are located in the RGB and AGB portions of the theoretical HRdiagram. As intermediate steps, (1) bolometric corrections arecalibrated against selected intrinsic color indices; (2) the diagram ofphotometric coefficients 1/2 vs. astrometric trueparallaxes varpi are interpreted in terms of ranges of photosphericradii for every photometric group; (3) coefficients CR andCL for bias-free evaluation of mean photospheric radii andmean luminosities are computed. The LF of Galactic carbon giantsexhibits two maxima corresponding to the HC-stars of the thick disk andto the CV-stars of the old thin disk respectively. It is discussed andcompared to those of carbon stars in the Magellanic Clouds and Galacticbulge. The HC-part is similar to the LF of the Galactic bulge,reinforcing the idea that the Bulge and the thick disk are part of thesame dynamical component. The CV-part looks similar to the LF of theLarge Magellanic Cloud (LMC), but the former is wider due to thesubstantial errors on HIPPARCOS parallaxes. The obtained meanluminosities increase with increasing radii and decreasing effectivetemperatures, along the HC-CV sequence of photometric groups, except forHC0, the earliest one. This trend illustrates the RGB- and AGB-tracks oflow- and intermediate-mass stars for a range in metallicities. From acomparison with theoretical tracks in the HR diagram, the initial massesMi range from about 0.8 to 4.0 Msun for carbongiants, with possibly larger masses for a few extreme objects. A largerange of metallicities is likely, from metal-poor HC-stars classified asCH stars on the grounds of their spectra (a spheroidal component), tonear-solar compositions of many CV-stars. Technetium-rich carbon giantsare brighter than the lower limit Mbol =~ -3.6+/- 0.4 andcentered at =~-4.7+0.6-0.9 at about =~(2935+/-200) K or CV3-CV4 in our classification. Much like the resultsof Van Eck et al. (\cite{vaneck98}) for S stars, this confirms theTDU-model of those TP-AGB stars. This is not the case of the HC-stars inthe thick disk, with >~ 3400 K and>~ -3.4. The faint HC1 and HC2-stars( =~ -1.1+0.7-1.0) arefound slightly brighter than the BaII giants ( =~-0.3+/-1.3) on average. Most RCB variables and HdC stars range fromMbol =~ -1 to -4 against -0.2 to -2.4 for those of the threepopulation II Cepheids in the sample. The former stars show the largestluminosities ( <~ -4 at the highest effectivetemperatures (6500-7500 K), close to the Mbol =~ -5 value forthe hot LMC RCB-stars (W Men and HV 5637). A full discussion of theresults is postponed to a companion paper on pulsation modes andpulsation masses of carbon-rich long period variables (LPVs; Paper IV,present issue). This research has made use of the Simbad databaseoperated at CDS, Strasbourg, France. Partially based on data from theESA HIPPARCOS astrometry satellite. Table 2 is only available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/390/967

CHARM: A Catalog of High Angular Resolution Measurements
The Catalog of High Angular Resolution Measurements (CHARM) includesmost of the measurements obtained by the techniques of lunaroccultations and long-baseline interferometry at visual and infraredwavelengths, which have appeared in the literature or have otherwisebeen made public until mid-2001. A total of 2432 measurements of 1625sources are included, along with extensive auxiliary information. Inparticular, visual and infrared photometry is included for almost allthe sources. This has been partly extracted from currently availablecatalogs, and partly obtained specifically for CHARM. The main aim is toprovide a compilation of sources which could be used as calibrators orfor science verification purposes by the new generation of largeground-based facilities such as the ESO Very Large Interferometer andthe Keck Interferometer. The Catalog is available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/386/492, and from theauthors on CD-Rom.

The 85Kr s-Process Branching and the Mass of Carbon Stars
We present new spectroscopic observations for a sample of C(N)-type redgiants. These objects belong to the class of asymptotic giant branchstars, experiencing thermal instabilities in the He-burning shell(thermal pulses). Mixing episodes called third dredge-up enrich thephotosphere with newly synthesized 12C in the He-rich zone,and this is the source of the high observed ratio between carbon andoxygen (C/O>=1 by number). Our spectroscopic abundance estimatesconfirm that, in agreement with the general understanding of the lateevolutionary stages of low- and intermediate-mass stars, carbonenrichment is accompanied by the appearance of s-process elements in thephotosphere. We discuss the details of the observations and of thederived abundances, focusing in particular on rubidium, a neutrondensity sensitive element, and on the s-elements Sr, Y, and Zr belongingto the first s-peak. The critical reaction branching at 85Kr,which determines the relative enrichment of the studied species, isdiscussed. Subsequently, we compare our data with recent models fors-processing in thermally pulsing asymptotic giant branch stars, atmetallicities relevant for our sample. A remarkable agreement betweenmodel predictions and observations is found. Thanks to the differentneutron density prevailing in low- and intermediate-mass stars,comparison with the models allows us to conclude that most C(N) starsare of low mass (M<~3 Msolar). We also analyze the12C/13C ratios measured, showing that most of themcannot be explained by canonical stellar models. We discuss how thisfact would require the operation of an ad hoc additional mixing,currently called cool bottom process, operating only in low-mass starsduring the first ascent of the red giant branch and, perhaps, alsoduring the asymptotic giant branch.

Speckle Interferometry of New and Problem Hipparcos Binaries. II. Observations Obtained in 1998-1999 from McDonald Observatory
The Hipparcos satellite made measurements of over 9734 known doublestars, 3406 new double stars, and 11,687 unresolved but possible doublestars. The high angular resolution afforded by speckle interferometrymakes it an efficient means to confirm these systems from the ground,which were first discovered from space. Because of its coverage of adifferent region of angular separation-magnitude difference(ρ-Δm) space, speckle interferometry also holds promise toascertain the duplicity of the unresolved Hipparcos ``problem'' stars.Presented are observations of 116 new Hipparcos double stars and 469Hipparcos ``problem stars,'' as well as 238 measures of other doublestars and 246 other high-quality nondetections. Included in these areobservations of double stars listed in the Tycho-2 Catalogue andpossible grid stars for the Space Interferometry Mission.

The effective temperatures of carbon-rich stars
We evaluate effective temperatures of 390 carbon-rich stars. Theinterstellar extinction on their lines of sights was determined andcircumstellar contributions derived. The intrinsic (dereddened) spectralenergy distributions (SEDs) are classified into 14 photometric groups(HCi, CVj and SCV with i=0,5 and j=1,7). The newscale of effective temperatures proposed here is calibrated on the 54angular diameters (measured on 52 stars) available at present from lunaroccultations and interferometry. The brightness distribution on stellardiscs and its influence on diameter evaluations are discussed. Theeffective temperatures directly deduced from those diameters correlatewith the classification into photometric groups, despite the large errorbars on diameters. The main parameter of our photometric classificationis thus effective temperature. Our photometric < k right >1/2 coefficients are shown to be angular diameters on arelative scale for a given photometric group, (more precisely for agiven effective temperature). The angular diameters are consistent withthe photometric data previously shown to be consistent with the trueparallaxes from HIPPARCOS observations (Knapik, et al. \cite{knapik98},Sect. 6). Provisional effective temperatures, as constrained by asuccessful comparison of dereddened SEDs from observations to modelatmosphere predictions, are in good agreement with the values directlycalculated from the observed angular diameters and with those deducedfrom five selected intrinsic color indices. These three approaches wereused to calibrate a reference angular diameter Phi 0 and theassociated coefficient CT_eff. The effective temperatureproposed for each star is the arithmetic mean of two estimates, one(``bolometric'') from a reference integrated flux F0, theother (``spectral'') from calibrated color indices which arerepresentative of SED shapes. Effective temperatures for about 390carbon stars are provided on this new homogeneous scale, together withvalues for some stars classified with oxygen-type SEDs with a total of438 SEDs (410 stars) studied. Apparent bolometric magnitudes are given.Objects with strong infrared excesses and optically thick circumstellardust shells are discussed separately. The new effective temperaturescale is shown to be compatible and (statistically) consistent with thesample of direct values from the observed angular diameters. Theeffective temperatures are confirmed to be higher than the mean colortemperatures (from 140 to 440 K). They are in good agreement with thepublished estimates from the infrared flux method forTeff>= 3170 K, while an increasing discrepancy is observedtoward lower temperatures. As an illustration of the efficiency of thephotometric classification and effective temperature scale, the C/Oratios and the Merrill-Sanford (M-S) band intensities are investigated.It is shown that the maximum value, mean value and dispersion of C/Oincrease along the photometric CV-sequence, i.e. with decreasingeffective temperature. The M-S bands of SiC2 are shown tohave a transition from ``none'' to ``strong'' at Teff =~(2800+/- 150right ) K. Simultaneously, with decreasing effectivetemperature, the mean C/O ratio increases from 1.04 to 1.36, thetransition in SiC2 strength occurring while 1.07<= C/O<= 1.18. This research has made use of the Simbad database operatedat CDS, Strasbourg, France. Table 10 is only available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)}or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/369/178

Catalogue of Apparent Diameters and Absolute Radii of Stars (CADARS) - Third edition - Comments and statistics
The Catalogue, available at the Centre de Données Stellaires deStrasbourg, consists of 13 573 records concerning the results obtainedfrom different methods for 7778 stars, reported in the literature. Thefollowing data are listed for each star: identifications, apparentmagnitude, spectral type, apparent diameter in arcsec, absolute radiusin solar units, method of determination, reference, remarks. Commentsand statistics obtained from CADARS are given. The Catalogue isavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcar?J/A+A/367/521

Stars with the Largest Hipparcos Photometric Amplitudes
A list of the 2027 stars that have the largest photometric amplitudes inHipparcos Photometry shows that most variable stars are all Miras. Thepercentage of variable types change as a function of amplitude. Thiscompilation should also be of value to photometrists looking forrelatively unstudied, but large amplitude stars.

General Catalog of Galactic Carbon Stars by C. B. Stephenson. Third Edition
The catalog is an updated and revised version of Stephenson's Catalogueof Galactic Cool Carbon Stars (2nd edition). It includes 6891 entries.For each star the following information is given: equatorial (2000.0)and galactic coordinates, blue, visual and infrared magnitudes, spectralclassification, references, designations in the most significantcatalogs and coordinate precision classes. The main catalog issupplemented by remarks containing information for which there was noplace in entries of the main part, as well as some occasional notesabout the peculiarities of specific stars.

On the distance and mass-loss rate of carbon stars showing the silicon carbide emission feature
The distances and the mass-loss rates of carbon stars are in generalvery poorly known. The various estimates of the distances, taken fromthe general literature, show considerable discrepancies, while theevaluations of the mass-loss rates can be in error by more than an orderof magnitude. In this work we have evaluated these two important stellarparameters for a previously selected sample of 55 carbon stars showingthe 11.3 mu m band, commonly attributed to silicon carbide (SiC) grains.To perform the calculation we have used the values of geometrical andphysical parameters of these sources obtained from the best fits oftheir observed spectra. Using the distance values derived in this wayand the 11.3 mu m band intensity, we have evaluated the absolute bandstrength and we have found that, in agreement with other authors, thereis a correlation between this quantity and the mass-loss rate. Thiscorrelation can be very useful to determine the mass-loss rate of othercarbon stars not included in our sample, by means of the intensity ofthe SiC band, without using the usual technique based on COobservations. The same procedure can be conveniently applied to the sameas well as to other carbon stars, whose spectra will be available to thecommunity in the next future (i.e. the infrared spectra of sourcesobserved by the Infrared Satellite Observatory, ISO).

Multiperiodicity in semiregular variables. I. General properties
We present a detailed period analysis for 93 red semiregular variablesby means of Fourier and wavelet analyses of long-term visualobservations carried out by amateur astronomers. The results of thisanalysis yield insights into the mode structure of semiregular variablesand help to clarify the relationship between them and Mira variables.After collecting all available data from various international databases(AFOEV, VSOLJ, HAA/VSS and AAVSO) we test the accuracy and reliabilityof data. We compare the averaged and noise-filtered visual light curveswith simultaneous photoelectric V-measurements, the effect of the lengthversus the relatively low signal-to-noise ratio is illustrated by periodanalysis of artificial data, while binning effects are tested bycomparing results of frequency analyses of the unbinned and averagedlight curves. The overwhelming majority of the stars studied showmultiperiodic behaviour. We found two significant periods in 44variables, while there are definite signs of three periods in 12 stars.29 stars turned out to be monoperiodic with small instabilities in theperiod. Since this study deals with the general trends, we wanted tofind only the most dominant periods. The distribution of periods andperiod ratios is examined through the use of the (log P_0, log P_1) and(log P_1, log P_0/P_1) plots. Three significant and two less obvioussequences are present which could be explained as the direct consequenceof different pulsational modes. This hypothesis is supported by theresults for multiperiodic variables with three periods. Finally, thesespace methods are illustrated by several interesting case studies thatshow the best examples of different special phenomena such as long-termamplitude modulation, amplitude decrease and mode switching.

Dust extinction and intrinsic SEDs of carbon-rich stars. III. The Miras, CS, and SC stars
The present work is an extension of a recent study by Knapik &Bergeat (\cite{knapik97}), and Bergeat et al. (\cite{berge98b})henceforth called Papers I and II, respectively. The spectral energydistributions (SEDs) of about 440 carbon-rich stars and the interstellarextinction observed on their line of sights were analysed. The methodsoriginally developed for Semi-Regular (SR) and Irregular (L) variables(Paper I: our groups CV1 to CV6) were then extended (Paper II) to thehot carbon (HC) stars (our groups HC0 to HC5) and related objects (RCB,BaII and HdC stars). Shortly, this is a kind of a pair method making usesimultaneously of the whole SED from UV to IR. Our approach is appliedhere to the galactic cool carbon-rich variables which were notconsidered in Paper I, namely the carbon Miras and very cool non-Miras,and the CS and SC variables. The carbon Miras with infrared silicateemission are also studied. The photometric CV1 to CV6 classificationscheme of paper I is implemented, and we add here a later CV7-group anda specific SCV-group which corresponds to spectroscopic SC stars. Acontinuous S-SC-CS-C sequence is clearly supported by our results. Thecarbon stars with IR silicate emission included in our study do havecarbon-rich SEDs of the three consecutive groups HC5, CV1 and CV2. Theystand among the relatively hot carbon variables, in the 3600-3000 Krange in effective temperature. The carbon Miras are satisfactorilydescribed in this enlarged scheme. No specific extension is requiredsince non-Miras are also found in the CV7 and SCV-groups. The derivedgroup is however frequently phase-dependent in these large amplitudevariables. Additional selective extinction of circumstellar (CS) originis observed in variable amounts. The mean extinction law for theinterstellar diffuse medium as tabulated by Mathis (\cite{mathis}) isshown to be relevant. It applies to both interstellar and circumstellarextinction with a possible CS neutral extinction in addition which wouldremain undetected here. The corresponding colour excess E(B-V) is largerat minimum light or intermediate phases than what it is at maximum light(where it can amount to zero). It is associated to large IR excessesattributed to the emission from CS dust. Long-term variations onthousands of days may be interpreted in terms of varying CS dust opacityon the line of sight. The dust influence is discussed. It is shown thatscattering, if substantial on the line of sight in the observing lobe,has to be essentially wavelength-independent, i.e. due to large neutralscatterers, especially in high opacity objects like IRC +10216. Finally,with the HC0 to HC5 classification of HC stars (Paper II), we obtain afourteen groups sequence (HC0 to HC5 and then CV1 to CV7 from theearlier one to the latest one, and SCV for SC stars apart). The numberof studied stars amounts now to about 600 that is about 40 stars pergroup on the average when the oxygen-type SEDs are subtracted. Theeffective temperature calibration of this classification scheme iscurrently in preparation. This research has made use of the Simbaddatabase operated at CDS, Strasbourg, France.}\fnmsep\thanks{Partiallybased on data from the ESA HIPPARCOS astrometrysatellite}\fnmsep\thanks{Table~5 is only available in electronic form atthe CDS via anonymous ftp 130.79.128.5

Quantitative analysis of carbon isotopic ratios in carbon stars. II. The effect of model atmosphere on the iso-intensity method
We discuss the analysis of (12C/({13)) C} ratios in cool carbon starspresented by de Laverny & Gustafsson (\cite{dLG98}), who questionedthe reliability of the iso-intensity method used by Ohnaka & Tsuji(\cite{OT96}). We show that the systematic discrepancy of (12C/({13)) C}ratios between Lambert et al. (\cite{lambert86}) and Ohnaka & Tsuji(\cite{OT96}) cannot be attributed to the uncertainty of theiso-intensity method. The analysis of the iso-intensity method done byde Laverny & Gustafsson (\cite{dLG98}) differs from that of Ohnaka& Tsuji (\cite{OT96}), defining the abscissa of curves of depthgrowth in a completely different manner. Namely, we derived the abscissadirectly from model atmospheres, while they simply assumed a singleexcitation temperature whose value is never accurately derived. The highsensitivity of the iso-intensity method to model atmospheres, reportedin their work, can be attributed to an incorrect definition of theabscissa of curves of depth growth. In fact, we show that thedetermination of (12C/({13)) C} ratios by the iso-intensity method isnot so sensitive to model atmospheres (atmospheric structure itself andstellar parameters) as they claim, when the abscissa is properlycalculated. In addition, we demonstrate that our model atmospheres canreproduce photometric and spectrophotometric observations fairly well.Therefore, their conclusion that the iso-intensity method is risky andunreliable for determining (12C/({13)) C} ratios in cool carbon starscannot be justified.

The PL relation of galactic carbon LPVs. The distance modulus to LMC
We present a period-luminosity (PL) diagram of 115 galactic carbon-richlong period variables (LPVs) observed by the HIPPARCOS satellite, in theform of the (MK,log P) relation. Our plot is compared to thediagram of carbon variables observed in the Large Magellanic Cloud(LMC). Both diagrams are found very similar and three samples aredelineated: long period variables close to the PL relation of Feast etal. (1989), short period-overluminous variables and a few underluminousLPVs, respectively Samples 1, 2 and 3. The used data were deduced fromexpectations of true parallaxes (Knapik et al. 1997) which arestatistically free of the Lutz-Kelker effect. The remaining bias due tothe non-gaussian distribution of absolute magnitudes is avoided: anon-linear parametric method is applied in Sect. 4 to the analysis ofthe PL relation for Sample 1 (72 LPVs). We obtainMK=(-3.99+/-0.13)log P+(2.07+/-0.15), in good agreement withthe slope found for LMC variables by Reid et al. (1995). The LMCdistance modulus then derived is mu =18.50+/-0.17. A well-defined upperlimit (ul) for long period stars in Sample 1 is found, with similarslopes in both the Galaxy (-4.85) and LMC (-4.72). No correction formetallicity was applied to the results. This research has made use ofthe Simbad database operated at CDS, Strasbourg, France.

Circumstellar emission from dust envelopes around carbon stars showing the silicon carbide feature
Spectroscopic and photometric data relative to a sample of 55 carbonstars showing the 11.3 mu m feature have been fitted in the wavelengthrange between 0.4 and 100 mu m by means of a radiative transfer modelusing the laboratory extinction spectra of amorphous carbon and siliconcarbide (SiC) grains. The transfer code allows to determine in aself-consistent way the grain equilibrium temperature of the variousspecies at different distances from the central star and gives all therelevant circumstellar parameters which can be very important for theevolutionary study of carbon stars. In order to get meaningfulinformation on the nature and physical properties of the dust grainsresponsible for the 11.3 mu m feature and the underlying continuum, thefitting procedure of the spectra has been applied individually to everysingle source. For this reason it has been possible to take into accountany variation in position and shape of the band from source to source.Our analysis show that all the sources, in addition to the amorphouscarbon grains accounting for the continuum emission, need always thepresence of alpha -SiC particles while some of them require also beta-SiC. Moreover, the presence of one or both types of SiC particles seemsnot correlated neither with the total optical thickness nor with anyother physical and geometrical parameters of the circumstellar envelope.The best-fit parameters found in this work have been used to calculatethe mass-loss rate from the central stars. The clear correlation, thatwe find between the strength of the SiC feature and the total massloss-rate, confirms the results already found by other authors for thesame kind of sources and derived from the observed CO emission lines.

Carbon Stars
Absolute magnitudes are estimated for carbon stars of various subtypesin the Hipparcos catalogue and as found in the Magellanic Clouds.Stellar radii fall within the limits of 2.4-4.7 AU. The chemicalcomposition of carbon stars indicates that the C-N stars show nearlysolar C/H, N/H, and ^12C/^13C ratios. This indicates that much of the Cand N in our Galaxy came from mass-losing carbon stars. Special carbonstars such as the C-R, C-H, and dC stars are described. Mass loss fromasymptotic giant branch (AGB) carbon stars, at rates up to several x10^-5 M{solar} year^-1, contributes about half of the total mass returnto the interstellar medium. R stars do not lose mass and may becarbon-rich red giants. The mass loss rates for Miras are about 10 timeshigher than for SRb and Lb stars, whose properties are similar enough toshow that they are likely to belong to the same population. Thedistribution of carbon star mass loss rates peaks at about 10^-7M{solar} year^-1, close to the rate of growth of the core mass anddemonstrative of the close relationship between mass loss and evolution.Infrared spectroscopy shows that dust mixtures can occur. Detachedshells are seen around some stars; they appear to form on the timescales of the helium shell flashes and to be a normal occurrence incarbon star evolution.

Classification and Identification of IRAS Sources with Low-Resolution Spectra
IRAS low-resolution spectra were extracted for 11,224 IRAS sources.These spectra were classified into astrophysical classes, based on thepresence of emission and absorption features and on the shape of thecontinuum. Counterparts of these IRAS sources in existing optical andinfrared catalogs are identified, and their optical spectral types arelisted if they are known. The correlations between thephotospheric/optical and circumstellar/infrared classification arediscussed.

Complementary Trace Element Abundances in Meteoritic SiC Grains and Carbon Star Atmospheres
Equilibrium condensation calculations successfully explain thecomplementary trace element abundance patterns observed in carbon staratmospheres and circumstellar SiC grains found in meteorites. Fractionaltrace element condensation into SiC depletes the gas in refractory traceelements, while more volatile elements remain in the gas. The observedcomplementary patterns imply that dust forms relatively close to thestar, possibly during the minimum light phase in stellar variabilitycycles. Once the gas falls back onto the star during stellarcontraction, photospheric abundances become relatively enriched in morevolatile elements. The complementary trace element abundances linkcircumstellar SiC grains from meteorites to carbon star atmospheres.

Interstellar extinction and the intrinsic spectral distribution of variable carbon stars.
We present a new method of evaluation of the extinction by interstellardust on cool carbon variables. These late-type stars show no markedrelationship between spectral classification (the R, N- and C-types) andphotometric colour indices. The pair method is thus ruled out, at leastin the form currently in use for early-type or intermediate stars. Ourmethod makes use of the whole spectral energy distributions from UV toIR. A sample of 60 unreddened carbon variables is delineated and newcolour-colour diagrams are proposed where the reddening vector is nearlyperpendicular to their narrow intrinsic locus. Six photometric groups(or boxes : CV1 to 6) are derived among unreddened stars. They show acontinuous range of spectral energy distributions from "bluer" to"redder", and mean colour indices are obtained. A pair method isdescribed where each presumably reddened star is compared to these meanunreddened stars, a given extinction law being assumed. As anillustration, the results are shown for a sample of 133 well-documentedstars. The mean extinction law usually adopted for the diffuseinterstellar medium (R_V_=~3.1) is shown to provide good fits. Thethreshold for reddening detection turns to be E(B-V)=~0.02-0.03A goodcorrelation is observed when the derived colour excesses are compared tovalues from maps in the literature. The mean rate of visual extinctionamounts to =~1.25+/-1.1 , ranging from 0.37 nearl=~240° (intercloud) to 2.1 (cloud + intercloud) in two structurescorrelated with Gould's belt.

A Moderate-Resolution Spectral Atlas of Carbon Stars: R, J, N, CH, and Barium Stars
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996ApJS..105..419B&db_key=AST

Angular Diameters and Effective Temperatures of Carbon Stars
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996AJ....112..294D&db_key=AST

Quantitative analysis of carbon isotopic ratios in carbon stars. I. 62 N-type and 15 SC-type carbon stars.
We present a result of quantitative analysis of ^12^C/^13^C ratios in 62N-type and 15 SC-type carbon stars. By the use of CCD as a detector wecan obtain spectra of resolution ~20,000 with enough signal-to-noiseratios for a large number of carbon stars, for which ^12^C/^13^C ratioshave not yet been derived. Carbon isotopic ratios are determined fromlines of the CN red system around 8000A, based on the iso-intensitymethod and line-blanketed model atmospheres. The average of ^12^C/^13^Cratios in 62 N-type carbon stars is found to be 27+/-11 (standarddeviation). The majority of the N-type carbon stars studied (about 85%)are found to have ^12^C/^13^C ratios less than 40, and the number ofstars which have ^12^C/^13^C ratios larger than 40 is found to berelatively small. This result shows a marked contrast to some of theprevious results that have shown the opposite distribution, namely,^12^C/^13^C ratios mostly larger than 40 in N-type carbon stars. Theaverage of ^12^C/^13^C ratios in 15 SC-type carbon stars is found to be22+/-14 (standard deviation). Most of the SC-type carbon stars studiedare found to have ^12^C/^13^C ratios larger than 10, while only three ofthem turn out to be ^13^C-rich. This is in contrast with the earlierclassification based on low resolution spectra which classified them asJ-type, that is, ^13^C-rich. The earlier temperature scale whichclassified SC-type carbon stars as the latest (C8-9) based on theirstrong NaI D lines can not be necessarily justified. The strong NaI Dlines of SC stars should be attributed to the peculiar atmosphericstructure due to C/O ratios very near to unity. The resulting^12^C/^13^C ratios are partly consistent with the scenario in which Mgiants evolve through SC-type to N-type carbon stars, as ^12^C producedduring the helium shell flash is added to the envelope.

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

새 글 등록


관련 링크

  • - 링크가 없습니다. -
새 링크 등록


다음 그룹에 속해있음:


관측 및 측정 데이터

별자리:안드로메다자리
적경:00h27m31.68s
적위:+35°35'14.5"
가시등급:7.796
거리:12500 파섹
적경상의 고유운동:-4.5
적위상의 고유운동:-13.8
B-T magnitude:12.477
V-T magnitude:8.183

천체목록:
일반명AQ And
HD 1989HD 2342
TYCHO-2 2000TYC 2270-318-1
USNO-A2.0USNO-A2 1200-00210604
HIPHIP 2180

→ VizieR에서 더 많은 목록을 가져옵니다.