시작하기     새 그림     오늘의사진     Blog New!     로그인  

TYC 6702-184-1


내용

사진

사진 업로드

DSS Images   Other Images


관련 글

The HARPS search for southern extrasolar planets. XXV. Results from the metal-poor sample
Searching for extrasolar planets around stars of different metallicitymay provide strong constraints to the models of planet formation andevolution. In this paper we present the overall results of a HARPS (ahigh-precision spectrograph mostly dedicated to deriving precise radialvelocities) program to search for planets orbiting a sample of 104metal-poor stars (selected [Fe/H] below -0.5). Radial velocity timeseries of each star are presented and searched for signals using severalstatistical diagnostics. Stars with detected signals are presented,including 3 attributed to the presence of previously announced giantplanets orbiting the stars HD 171028, HD 181720, and HD 190984. Severalbinary stars and at least one case of a coherent signal caused byactivity-related phenomena are presented. One very promising new,possible giant planet orbiting the star HD 107094 is discussed, and theresults are analyzed in light of the metallicity-giant planetcorrelation. We conclude that the frequency of giant planets orbitingmetal-poor stars may be higher than previously thought, probablyreflecting the higher precision of the HARPS survey. In the metallicitydomain of our sample, we also find evidence that the frequency ofplanets is a steeply rising function of the stellar metal content, asfound for higher metallicity stars.Based on observations collected at the La Silla Parana Observatory, ESO(Chile) with the HARPS spectrograph at the 3.6-m telescope (ESO runs ID72.C-0488, 082.C-0212, and 085.C-0063).Full Tables 1 and 3 are onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/526/A112

Spectroscopic characterization of a sample of metal-poor solar-type stars from the HARPS planet search program. Precise spectroscopic parameters and mass estimation
Stellar metallicity strongly correlates with the presence of planets andtheir properties. To check for new correlations between stars and theexistence of an orbiting planet, we determine precise stellar parametersfor a sample of metal-poor solar-type stars. This sample was observedwith the HARPS spectrograph and is part of a program to search for newextrasolar planets. The stellar parameters were determined using an LTEanalysis based on equivalent widths (EW) of iron lines and by imposingexcitation and ionization equilibrium. The ARES code was used to allowautomatic and systematic derivation of the stellar parameters. Precisestellar parameters and metallicities were obtained for 97 lowmetal-content stars. We also present the derived masses, luminosities,and new parallaxes estimations based on the derived parameters, andcompare our spectroscopic parameters with an infra-red flux methodcalibration to check the consistency of our method in metal poor stars.Both methods seems to give the same effective temperature scale. Finallywe present a new calibration for the temperature as a function of B-Vand [Fe/H]. This was obtained by adding these new metal poor stars inorder to increase the range in metallicity for the calibration. Thestandard deviation of this new calibration is ~50 K.Based on observations collected at the La Silla Parana Observatory, ESO(Chile) with the HARPS spectrograph at the 3.6-m telescope (ESO runs ID72.C-0488, 082.C-0212, and 085.C-0063).Tables 1-3 are only available inelectronic form at http://www.aanda.org

A catalogue of young runaway Hipparcos stars within 3 kpc from the Sun
Traditionally, runaway stars are O- and B-type stars with large peculiarvelocities. We would like to extend this definition to young stars (upto ?50 Myr) of any spectral type and to identify those present in theHipparcos catalogue by applying different selection criteria, such aspeculiar space velocities or peculiar one-dimensional velocities.Runaway stars are important for studying the evolution of multiple starsystems or star clusters, as well as for identifying the origins ofneutron stars. We compile the distances, proper motions, spectral types,luminosity classes, V magnitudes and B-V colours, and we utilizeevolutionary models from different authors to obtain star ages. We studya sample of 7663 young Hipparcos stars within 3 kpc from the Sun. Theradial velocities are obtained from the literature. We investigate thedistributions of the peculiar spatial velocity and the peculiar radialvelocity as well as the peculiar tangential velocity and itsone-dimensional components and we obtain runaway star probabilities foreach star in the sample. In addition, we look for stars that aresituated outside any OB association or OB cluster and the Galactic planeas well as stars for which the velocity vector points away from themedian velocity vector of neighbouring stars or the surrounding local OBassociation/cluster (although the absolute velocity might be small). Wefind a total of 2547 runaway star candidates (with a contamination ofnormal Population I stars of 20 per cent at most). Thus, aftersubtracting these 20 per cent, the runaway frequency among young starsis about 27 per cent. We compile a catalogue of runaway stars, which isavailable via VizieR.

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

Effective temperature scale and bolometric corrections from 2MASS photometry
We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Population studies. I - The Bidelman-MacConnell 'weak-metal' stars
BRVI and DDO photometry are presented for 309 Bidelman-MacConnell'weak-metal' stars. Radial velocities are calculated for most of thestars having Fe/H abundances of no more than -0.8. The photometricobservations were carried out using the 0.6-meter and 1.0-metertelescopes of the Siding Spring Observatory. Photometric taxonomy wasused to classify the stars as dwarfs, giants, red-horizontal branchstars, and ultraviolet-bright stars, respectively. It is found that 35percent of the stars are giants; 50 percent are dwarfs; and 5 percentbelong to the red-horizontal branch group. The role of selection effectsin investigations of the formation of the Galaxy is discussed on thebasis of the photometric observations and the observational constraintsproposed by Eggen et al. (1962).

Southern metal-poor stars - UBVRI photometry
Considering the study of subdwarf kinematics and metallicities by Eggen,Lynden-Bell, and Sandage (1962), UBVRI photometry and normalizedultraviolet excesses are presented for 178 metal-poor stars, 144 ofwhich are contained in the kinematically unbiased list of Bidelman andMacConnell (1973). The Lowell 0.6 m telescope at Cerro Tololo was used,equipped with a single-channel photometer and a Ga-As photomultiplier.The final magnitudes and colors, number of observations, value ofdelta(U-B)0.6 (if B-V lies between 0.35 and 0.90), B and M class, andpublished spectral types for these stars are presented; severalextremely metal-poor stars are evident. In addition, sixteen nearbyvisual companions of the stars were measured, and their magnitudes andcolors are given.

새 글 등록


관련 링크

  • - 링크가 없습니다. -
새 링크 등록


다음 그룹에 속해있음:


관측 및 측정 데이터

별자리:바다뱀자리
적경:13h03m27.53s
적위:-24°25'12.1"
가시등급:9.964
적경상의 고유운동:8.2
적위상의 고유운동:-30.4
B-T magnitude:10.567
V-T magnitude:10.014

천체목록:
일반명
TYCHO-2 2000TYC 6702-184-1
USNO-A2.0USNO-A2 0600-15360694
HIPHIP 63719

→ VizieR에서 더 많은 목록을 가져옵니다.