Home     Getting Started     New Pictures     Picture of the Day     Blog New!     Login  

σ Aql (Sigma Aquilae)


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Evolution of interacting binaries with a B type primary at birth
We revisited the analytical expression for the mass ratio distributionfor non-evolved binaries with a B type primary. Selection effectsgoverning the observations were taken into account in order to comparetheory with observations. Theory was optimized so as to fit best withthe observed q-distribution of SB1s and SB2s. The accuracy of thistheoretical mass ratio distribution function is severely hindered by theuncertainties on the observations. We present a library of evolutionarycomputations for binaries with a B type primary at birth. Some liberalcomputations including loss of mass and angular momentum during binaryevolution are added to an extensive grid of conservative calculations.Our computations are compared statistically to the observeddistributions of orbital periods and mass ratios of Algols. ConservativeRoche Lobe Over Flow (RLOF) reproduces the observed distribution oforbital periods but fails to explain the observed mass ratios in therange q in [0.4-1]. In order to obtain a better fit the binaries have tolose a significant amount of matter, without losing much angularmomentum.

Observed Orbital Eccentricities
For 391 spectroscopic and visual binaries with known orbital elementsand having B0-F0 IV or V primaries, we collected the derivedeccentricities. As has been found by others, those binaries with periodsof a few days have been circularized. However, those with periods up toabout 1000 or more days show reduced eccentricities that asymptoticallyapproach a mean value of 0.5 for the longest periods. For those binarieswith periods greater than 1000 days their distribution of eccentricitiesis flat from 0 to nearly 1, indicating that in the formation of binariesthere is no preferential eccentricity. The binaries with intermediateperiods (10-100 days) lack highly eccentric orbits.

PSR B1929+10 revisited in X-rays
We performed timing and spectral analyses for PSR B1929+10, one of theoldest (~107 years) of the ordinary pulsars detected inX-rays, using archival ROSAT, ASCA and RXTE data. Pulsed emission wasdetected at a more than five sigma level for the combined ROSAT PSPC-Band previously unpublished HRI data. Our pulse profile is in agreementwith that obtained by Yancopoulos et al. (1994, ApJ, 429, 832, ROSATPSPC-B) but now with better statistics. The pulsed fraction in the ROSATX-ray band is 0.25 ± 0.04. The pulsed signal has also beendetected in the ASCA GIS data (0.5-5 keV) with a similar pulsed fractionof 0.36 ± 0.11. No significant timing signal is found in the RXTEPCA data (>2~keV). We found that the combined ROSAT PSPC-B and ASCAGIS spectrum can satisfactorily be described by a power-law as well asby a double black-body model but not by a single black-body model orblack-body plus power law model. Fitting the combined ROSAT/ASCA 0.1-10keV spectrum by a power-law model we obtain a photon index α of2.54 ± 0.12 and a neutral hydrogen column density NHtowards the source of 9.8-1.0+1.4 ×1020 cm-2. For a double black-body fit our resultsare T1 = 2.0-0.05+0.05 ×106~K, T2 = 6.9-0.35+0.23× 106 K and NH =4.4-1.1+2.1 × 1020cm-2. In both cases the derived value of NH ishigher than that adopted in earlier works, but our result is fullyconsistent with the larger distance estimate of 331 ± 10 pc fromparallax measurements combined with the hydrogen distributionmeasurements in the direction to the pulsar.

An Apparent Descriptive Method for Judging the Synchronization of Rotation of Binary Stars
The problem of the synchronous rotation of binary stars is judged byusing a synchronous parameter Q introduced in an apparent descriptivemethod. The synchronous parameter Q is defined as the ratio of therotational period to the orbital period. The author suggests severalapparent phenomenal descriptive methods for judging the synchronizationof rotation of binary stars. The first method is applicable when theorbital inclination is well-known. The synchronous parameter is definedby using the orbital inclination i and the observable rotationalvelocity (V1,2 sin i)M. The method is mainly suitable for eclipsingbinary stars. Several others are suggested for the cases when theorbital inclination i is unknown. The synchronous parameters are definedby using a1,2 sin i,m1,2 sin3 i, the mass function f (m) andsemi-amplitudes of the velocity curve, K1,2 given in catalogue ofparameters of spectroscopic binary systems and (V1,2 sin i)M. Thesemethods are suitable for spectroscopic binary stars including those thatshow eclipses and visual binary stars concurrently. The synchronousparameters for fifty-five components in thirty binary systems arecalculated by using several methods. The numerical results are listed inTables 1 and 2. The statistical results are listed in Table 3. Inaddition, several apparent descriptive methods are discussed.

Tidal Effects in Binaries of Various Periods
We found in the published literature the rotational velocities for 162B0-B9.5, 152 A0-A5, and 86 A6-F0 stars, all of luminosity classes V orIV, that are in spectroscopic or visual binaries with known orbitalelements. The data show that stars in binaries with periods of less thanabout 4 days have synchronized rotational and orbital motions. Stars inbinaries with periods of more than about 500 days have the samerotational velocities as single stars. However, the primaries inbinaries with periods of between 4 and 500 days have substantiallysmaller rotational velocities than single stars, implying that they havelost one-third to two-thirds of their angular momentum, presumablybecause of tidal interactions. The angular momentum losses increase withdecreasing binary separations or periods and increase with increasingage or decreasing mass.

Apsidal Motion in Binaries: Rotation of the Components
A sample of 51 separated binary systems with measured apsidal periodsand rotational velocities of the components is examined. The ranges ofthe angles of inclination of the equatorial planes of the components tothe orbital plane are estimated for these systems. The observed apsidalvelocities can be explained by assuming that the axes of rotation of thestars are nonorthogonal to the orbital plane in roughly 47% of thesystems (24 of the 51) and the rotation of the components is notsynchronized with the orbital motion in roughly 59% of the systems (30of 51). Nonorthogonality and nonsynchrony are defined as deviations from90° and a synchronized angular velocity, respectively, at levels of1 or more.

Rotational Velocities of B Stars
We measured the projected rotational velocities of 1092 northern B starslisted in the Bright Star Catalogue (BSC) and calibrated them againstthe 1975 Slettebak et al. system. We found that the published values ofB dwarfs in the BSC average 27% higher than those standards. Only 0.3%of the stars have rotational velocities in excess of two-thirds of thebreakup velocities, and the mean velocity is only 25% of breakup,implying that impending breakup is not a significant factor in reducingrotational velocities. For the B8-B9.5 III-V stars the bimodaldistribution in V can be explained by a set of slowly rotating Ap starsand a set of rapidly rotating normal stars. For the B0-B5 III-V starsthat include very few peculiar stars, the distributions in V are notbimodal. Are the low rotational velocities of B stars due to theoccurrence of frequent low-mass companions, planets, or disks? Therotational velocities of giants originating from late B dwarfs areconsistent with their conservation of angular momentum in shells.However, we are puzzled by why the giants that originate from the earlyB dwarfs, despite having 3 times greater radii, have nearly the samerotational velocities. We find that all B-type primaries in binarieswith periods less than 2.4 days have synchronized rotational and orbitalmotions; those with periods between 2.4 and 5.0 days are rotating withina factor 2 of synchronization or are ``nearly synchronized.'' Thecorresponding period ranges for A-type stars are 4.9 and 10.5 days, ortwice as large. We found that the rotational velocities of the primariesare synchronized earlier than their orbits are circularized. The maximumorbital period for circularized B binaries is 1.5 days and for Abinaries is 2.5 days. For stars of various ages from 107.5 to1010.2 yr the maximum circularized periods are a smoothexponential function of age.

Catalogue of Apparent Diameters and Absolute Radii of Stars (CADARS) - Third edition - Comments and statistics
The Catalogue, available at the Centre de Données Stellaires deStrasbourg, consists of 13 573 records concerning the results obtainedfrom different methods for 7778 stars, reported in the literature. Thefollowing data are listed for each star: identifications, apparentmagnitude, spectral type, apparent diameter in arcsec, absolute radiusin solar units, method of determination, reference, remarks. Commentsand statistics obtained from CADARS are given. The Catalogue isavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcar?J/A+A/367/521

A Second Catalog of Orbiting Astronomical Observatory 2 Filter Photometry: Ultraviolet Photometry of 614 Stars
Ultraviolet photometry from the Wisconsin Experiment Package on theOrbiting Astronomical Observatory 2 (OAO 2) is presented for 614 stars.Previously unpublished magnitudes from 12 filter bandpasses withwavelengths ranging from 1330 to 4250 Å have been placed on thewhite dwarf model atmosphere absolute flux scale. The fluxes wereconverted to magnitudes using V=0 for F(V)=3.46x10^-9 ergs cm^-2 s^-1Å^-1, or m_lambda=-2.5logF_lambda-21.15. This second catalogeffectively doubles the amount of OAO 2 photometry available in theliterature and includes many objects too bright to be observed withmodern space observatories.

Apsidal Motion in Double Stars. I. Catalog
A catalog of 128 double stars with measured periods of apsidal motion iscompiled. Besides the apsidal periods, the orbital elements of binariesand physical parameters of components (masses, radii, effectivetemperatures, surface gravities) are given. The agreement of the apsidalperiods found by various authors is discussed.

Orbital circularization in detached binaries with early-type primaries
Extending our previous study, the present paper reports on thediscussion of the orbital circularization in 37 detached binaries withearly-type primaries. From comparison of the theoretical predictionswith the orbital eccentricities of our binary systems, we find thatZahn's circularization theories are substantially consistent with theobserved data for overwhelming majority of our samples. However, we alsonote that three binaries of whom both components are asynchronizedrotators possess circular orbits. How to understand the circularism ofthe three systems remains a problem not only to Zahn's theories, but toall other present circularization mechanisms.We think that studies onthe circularization of pre-main-sequence binary systems could providesome clues for the problem.

Photospheric Heating in Colliding-Wind Binaries
The spectra of many massive binaries show secondary line depths that aredeeper when the secondary is approaching, a phenomenon we refer to asthe Struve-Sahade effect. Such systems are expected to contain collidingstellar winds, and we show how the X-ray flux from the bow shock thatwraps around the secondary will preferentially heat one hemisphere ofthe secondary. If the bow shock suffers any significant Coriolisdeflection due to orbital motion, then the heated surface of thesecondary will be best seen during orbital phases of secondary approach.We present model calculations for the system AO Cassiopeiae thatillustrate how the secondary's light curve appears brighter during theseorbital phases (as observed). We find that the model profiles ofspectral lines that are insensitive to or that strengthen with heatingwill appear deeper when the secondary is approaching, but the sameheating effects may be nulled or even reversed in lines that weaken withincreased temperature. This differing response of lines to heating maybe at odds with reports of systematic deepening of UV and optical lines,and thus the connection between such heating and the Struve-Sahadeeffect needs further observational and theoretical investigation.

The calculation of critical rotational periods in three typical close binary systems based on synchronization theory.
Not Available

Measurement and study of rotation in close binary stars. (V) Orbital circularization.
Not Available

A calibration of Geneva photometry for B to G stars in terms of Teff, log G and [M/H]
We have used recent Kurucz models and numerous standard stars to improvethe calibration of the Geneva photometric system proposed a few yearsago. A new photometric diagram for the classification of intermediatestars (8500 <= Teff <= 11000 K) is proposed and fills agap that the previous calibration had left open. Evidence is given for aclear inadequacy of the new Kurucz models in the region of the parameterspace where convection begins to take over radiation in the star'satmosphere. This problem makes the determination of the surface gravitydifficult, but leaves that of the other parameters apparentlyunaffected. The determination of metallicity is considerably improved,thanks to the homogeneous spectroscopic data published recently by\cite[Edvardsson et al. (1993)]{ref23}. Instead of showing thetraditional diagrams, we chose to publish the diagrams of the physicalparameters with the inverted grids inside, i.e. the lines of constantphotometric parameters.

Synchronization in the early-type detached binary stars.
With a set of homogeneous and refined rotational velocities, we discussthe synchronism in the "normal" (all the particular stars, such as Ap,Am and Of, are excluded) early-type detached binaries. Being differentfrom previous statistical studies, the present paper not onlyinvestigates the rotational synchronism of each component, but alsoestimates its age from new stellar evolutionary grids, and calculatesits synchronization time scale with Zahn's dynamically tidal theory.Significantly, we find that the dynamically tidal synchronizationmechanism is substantially compatible with the observed data from thecomparison of the rotational properties of our components with thetheoretical predictions.

A Catalogue of Correlations Between Eclipsing Binaries and Other Categories of Double Stars
Among the 9110 stars in The Bright Star Catalogue, there are 225eclipsing or ellipsoidal variables. A search has been made for these incatalogues of spectroscopic binaries, visual double or multiple stars,speckle interferometry, occulation binaries, and galatic clusters. Themajority of the photometric binaries are also members of groups ofhigher multiplicity. The variables are in systems ranging from one to 91stars, five on the average. 199 are either spectroscopic binaries (SB)or stars with variable radial velocity, with orbital periods known for160. Photometric periods are lacking for 48 while SB periods areavailable for 23 of these. Observers with photoelectric equipment areencouraged to plan observations to test if the SB periods are consistentwith photometric data. Observers are likewise encouraged to examinethose stars for which the photometric and SB periods appear to beinconsistent. Parallaxes are available for 86 of the stars, 41 of themindicating distances nearer than 50 parsecs.

Hubble Space Telescope Observations of Isolated Pulsars
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996ApJ...467..370P&db_key=AST

Measurement and study of rotation in close binary stars (IV) Comparison between observation and predictions of two theories.
Not Available

Measurement and study of rotation in close binary stars (III) Statistical analysis of synchronization.
Not Available

The ROSAT all-sky survey catalogue of optically bright OB-type stars.
For the detailed statistical analysis of the X-ray emission of hot starswe selected all stars of spectral type O and B listed in the Yale BrightStar Catalogue and searched for them in the ROSAT All-Sky Survey. Inthis paper we describe the selection and preparation of the data andpresent a compilation of the derived X-ray data for a complete sample ofbright OB stars.

Eclipsing binaries as IRAS sources.
In a systematic search we looked for coincidences in the positions ofeclipsing binaries and IRAS point sources as evidence of a physicalassociation. In a detailed discussion of the available optical andinfrared data combined with model calculations, we show that 50-75% ofthe coincidences between eclipsing binaries and IRAS sources are real.We discuss a subsample of 44 stars in some detail and surveyed thevicinity of them on POSS and SRC/ESO atlases for possible opticalcounterparts and present identification maps. In the cases of BS Sco andV 718 Sco the infrared radiation may come from an accretion disk.

Measurement and analysis of rotation in close binaries. II. Calculation of synchronism.
Not Available

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

The local distribution of NA I interstellar gas
We present high-resolution absorption measurements (lambda/Delta lambdaapproximately 75,000) of the interstellar Na I D lines at 5890 A toward80 southern hemisphere early-type stars located in the localinterstellar medium (LISM). Combining these results with other sodiummeasurements taken from the literature, we produce galactic maps of thedistribution of neutral sodium column density for a total of 293 starsgenerally lying within approximately 250 pc of the Sun. These mapsreveal the approximate shape of the mid-plane contours of the rarefiedregion of interstellar space termed the Local Bubble. Its shape is seenas highly asymmetric, with a radius ranging from 30 to 300 pc, and withan average radius of 60 pc. Similar plots of the Galactic mid-planedistribution of sources emitting extreme ultraviolet radiation show thatthey also trace out similar contours of the Local Bubble derived from NaI absorption measurements. We conclude that the Local Bubble absorptioninterface can be represented by a hydrogen column density,NuETA = 2 x 1019 cm-2, which explainsboth the local distribution of Na I absorption and the observed galacticdistribution of extreme ultraviolet sources. The derived mid-planecontours of the Bubble generally reproduce the large-scale featurescarved out in the interstellar medium by several nearby galactic shellstructures.

Rotation of close binary system components
The rotation of close binary system components is investigated. Theprincipal physical characteristics as well as the equatorial rotationaland the axial and orbital inclinations for 46 close binary systems weredetermined. It is found that the rotation axes of the individual starsin a pair cross the orbital plane under different angles. As a rule, therotation and orbital periods of a vast majority of the systemsinvestigated here do not coincide.

Measurement and Analysis of Rotation in Close Binary Stars - Part One - Observations and Results
Not Available

Speckle observations of visual and spectroscopic binaries. V.
Not Available

The distribution of interstellar dust in the solar neighborhood
We surveyed the IRAS data base at the positions of the 1808 O6-B9.5stars in The Bright Star Catalog for extended objects with excessemission at 60 microns, indicating the presence of interstellar dust atthe location of the star. Within 400 pc the filling factor of theinterstellar medium, for dust clouds with a density greater than 0.5/cucm is 14.6 + or - 2.4%. Above a density of 1.0/cu cm, the densitydistribution function appears to follow a power law index - 1.25. Whenthe dust clouds are mapped onto the galactic plane, the sun appears tobe located in a low-density region of the interstellar medium of widthabout 60 pc extending at least 500 pc in the direction of longitudes 80deg - 260 deg, a feature we call the 'local trough'.

Speckle observations of visual and spectroscopic binaries. IV
This is the fourth paper of this series giving results of speckleobservations for 22 visual and 161 spectroscopic binaries. Theobservation was carried out by using the 212 cm telescope of San PedroMartir Observatory in Mexico on 7 nights from July 20 to July 26, 1991.We obtained fringes in power spectra of 19 visual and 11 spectroscopicbinaries (6 newly resolved ones) with angular separation larger than0.06 arcsec. We introduced a new ICCD TV camera in this observation, andwere able to achieve the diffraction-limit resolution of the 212 cmtelescope.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:わし座
Right ascension:19h39m11.60s
Declination:+05°23'52.0"
Apparent magnitude:5.17
Distance:209.205 parsecs
Proper motion RA:2.5
Proper motion Dec:-2.7
B-T magnitude:5.177
V-T magnitude:5.18

Catalogs and designations:
Proper NamesSigma Aquilae
Bayerσ Aql
Flamsteed44 Aql
HD 1989HD 185507
TYCHO-2 2000TYC 487-3422-1
USNO-A2.0USNO-A2 0900-16020936
BSC 1991HR 7474
HIPHIP 96665

→ Request more catalogs and designations from VizieR