Home     Getting Started     New Pictures     Picture of the Day     Blog New!     Login  

68 Cyg


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

The Discordance of Mass-Loss Estimates for Galactic O-Type Stars
We have determined accurate values of the product of the mass-loss rateand the ion fraction of P+4, M˙q(P+4), for asample of 40 Galactic O-type stars by fitting stellar wind profiles toobservations of the P V resonance doublet obtained with FUSE, ORFEUSBEFS, and Copernicus. When P+4 is the dominant ion in thewind [i.e., 0.5<~q(P+4)<=1], M˙q(P+4)approximates the mass-loss rate to within a factor of <~2. Theorypredicts that P+4 is the dominant ion in the winds of O7-O9.7stars, although an empirical estimator suggests that the range O4-O7 maybe more appropriate. However, we find that the mass-loss rates obtainedfrom P V wind profiles are systematically smaller than those obtainedfrom fits to Hα emission profiles or radio free-free emission bymedian factors of ~130 (if P+4 is dominant between O7 andO9.7) or ~20 (if P+4 is dominant between O4 and O7). Thesediscordant measurements can be reconciled if the winds of O stars in therelevant temperature range are strongly clumped on small spatial scales.We use a simplified two-component model to investigate the volumefilling factors of the denser regions. This clumping implies thatmass-loss rates determined from ``ρ2'' diagnostics havebeen systematically overestimated by factors of 10 or more, at least fora subset of O stars. Reductions in the mass-loss rates of this size haveimportant implications for the evolution of massive stars andquantitative estimates of the feedback that hot-star winds provide totheir interstellar environments.

Bright OB stars in the Galaxy. III. Constraints on the radial stratification of the clumping factor in hot star winds from a combined Hα, IR and radio analysis
Context: .Recent results strongly challenge the canonical picture ofmassive star winds: various evidence indicates that currently acceptedmass-loss rates, {dot M}, may need to be revised downwards, by factorsextending to one magnitude or even more. This is because the mostcommonly used mass-loss diagnostics are affected by "clumping"(small-scale density inhomogeneities), influencing our interpretation ofobserved spectra and fluxes. Aims: .Such downward revisions wouldhave dramatic consequences for the evolution of, and feedback from,massive stars, and thus robust determinations of the clumping propertiesand mass-loss rates are urgently needed. We present a first attemptconcerning this objective, by means of constraining the radialstratification of the so-called clumping factor. Methods: .To thisend, we have analyzed a sample of 19 Galactic O-type supergiants/giants,by combining our own and archival data for Hα, IR, mm and radiofluxes, and using approximate methods, calibrated to more sophisticatedmodels. Clumping has been included into our analysis in the"conventional" way, by assuming the inter-clump matter to be void.Because (almost) all our diagnostics depends on the square of density,we cannot derive absolute clumping factors, but only factors normalizedto a certain minimum. Results: .This minimum was usually found tobe located in the outermost, radio-emitting region, i.e., the radiomass-loss rates are the lowest ones, compared to {dot M} derived fromHα and the IR. The radio rates agree well with those predicted bytheory, but are only upper limits, due to unknown clumping in the outerwind. Hα turned out to be a useful tool to derive the clumpingproperties inside r < 3{ldots}5 Rstar. Our most importantresult concerns a (physical) difference between denser and thinnerwinds: for denser winds, the innermost region is more strongly clumpedthan the outermost one (with a normalized clumping factor of 4.1± 1.4), whereas thinner winds have similar clumping properties inthe inner and outer regions. Conclusions: .Our findings arecompared with theoretical predictions, and the implications arediscussed in detail, by assuming different scenarios regarding the stillunknown clumping properties of the outer wind.

Looking for Discrete UV Absorption Features in the Early-Type Eclipsing Binaries μ1 Scorpii and AO Cassiopeiae
A search for discrete absorption components in the ultraviolet spectraof the early-type binaries μ1 Scorpii and AO Cassiopeiaehas been undertaken by analyzing material secured with the InternationalUltraviolet Explorer satellite during an exclusively assigned intervalof nearly 50 hr. While the spectra of μ1 Sco definitely donot show the presence of such lines, the spectra of AO Cas do confirmthem and permit us to draw some conclusions about where they may beformed.

On the feasibility of detection of neutron star companions to OB runaways using Gaia astrometry
For an illustrative sample of classical OB runaway stars, we examine thecapability of the upcoming Gaia satellite to detect compact companionsby the use of astrometric techniques. For the OB runaway stars in oursample, we estimate initial system parameters and consider the modifyingevolutionary effects of mass transfer and supernova explosion of theprimary. The possible system configurations that follow from this, andthe expected Gaia accuracy, determine the likelihood of detecting amovement of the photocentre due to an unseen companion. As the size ofthe natal kick imparted to the core of the exploding star is increasedthe overall probability of detecting a neutron star companion decreasesas more systems become disrupted. The overall detection probabilitiesfor our illustrative sample range from 2% to 27%, which imply thatwithin a distance of approximately 5 kpc from the Sun around 48detections of compact companions to runaway stars can be expected. Forcomparison, around 15% of High Mass X-ray Binaries would exhibit wobblesdetectable with Gaia.

Evolution of X-ray emission from young massive star clusters
The evolution of X-ray emission from young massive star clusters ismodelled, taking into account the emission from the stars as well asfrom the cluster wind. It is shown that the level and character of thesoft (0.2-10 keV) X-ray emission change drastically with cluster age andare tightly linked with stellar evolution. Using the modern X-rayobservations of massive stars, we show that the correlation betweenbolometric and X-ray luminosity known for single O stars also holds forO+O and (Wolf-Rayet) WR+O binaries. The diffuse emission originates fromthe cluster wind heated by the kinetic energy of stellar winds andsupernova explosions. To model the evolution of the cluster wind, themass and energy yields from a population synthesis are used as input toa hydrodynamic model. It is shown that in a very young cluster theemission from the cluster wind is low. When the cluster evolves, WRstars are formed. Their strong stellar winds power an increasing X-rayemission of the cluster wind. Subsequent supernova explosions pump thelevel of diffuse emission even higher. Clusters at this evolutionarystage may have no X-ray-bright stellar point sources, but a relativelyhigh level of diffuse emission. A supernova remnant may become adominant X-ray source, but only for a short time interval of a fewthousand years. We retrieve and analyse Chandra and XMM-Newtonobservations of six massive star clusters located in the LargeMagellanic Cloud (LMC). Our model reproduces the observed diffuse andpoint-source emission from these LMC clusters, as well as from theGalactic clusters Arches, Quintuplet and NGC 3603.

Correlation patterns between 11 diffuse interstellar bands and ultraviolet extinction
We relate the equivalent widths of 11 diffuse interstellar bands,measured in the spectra of 49 stars, to different colour excesses in theultraviolet. We find that most of the observed bands correlatepositively with the extinction in the neighbourhood of the2175-Åbump. Correlation with colour excesses in other parts of theextinction curve is more variable from one diffuse interstellar band toanother; we find that some diffuse bands (5797, 5850 and 6376 Å)correlate positively with the overall slope of the extinction curve,while others (5780 and 6284 Å) exhibit negative correlation. Wediscuss the implications of these results on the links between thediffuse interstellar band carriers and the properties of theinterstellar grains.

A Medium Resolution Near-Infrared Spectral Atlas of O and Early-B Stars
We present intermediate-resolution (R~8000-12,000) high signal-to-noise(S/N) H- and K-band spectroscopy of a sample of 37 optically visiblestars, ranging in spectral type from O3 to B3 and representing mostluminosity classes. Spectra of this quality can be used to constrain thetemperature, luminosity, and general wind properties of OB stars, whenused in conjunction with sophisticated atmospheric model codes. Mostimportant is the need for moderately high resolutions (R>=5000) andvery high signal-to-noise (S/N>=150) spectra for a meaningful profileanalysis. When using near-infrared spectra for a classification system,moderately high signal-to-noise (S/N~100) is still required, though theresolution can be relaxed to just a thousand or two. In the Appendix weprovide a set of very high-quality near-infrared spectra of Brackettlines in six early-A dwarfs. These can be used to aid in the modelingand removal of such lines when early-A dwarfs are used for telluricspectroscopic standards.

A Statistical Study of Threshold Rotation Rates for the Formation of Disks around Be Stars
This paper presents a detailed statistical determination of theequatorial rotation rates of classical Be stars. The rapid rotation ofBe stars is likely to be linked to the ejection of gas that forms densecircumstellar disks. The physical origins of these disks are notunderstood, although it is generally believed that the ability to spinup matter into a Keplerian disk depends on how close the stellarrotation speed is to the critical speed at which the centrifugal forcecancels gravity. There has been recent disagreement between thetraditional idea that Be stars rotate between 50% and 80% of theircritical speeds and new ideas (inspired by the tendency for gravitydarkening to mask rapid rotation at the equator) that their rotation maybe very nearly critical. This paper utilizes Monte Carlo forwardmodeling to simulate distributions of the projected rotation speed(vsini), taking into account gravity darkening, limb darkening, andobservational uncertainties. A χ2 minimization procedurewas used to find the distribution parameters that best reproduceobserved vsini distributions from R. Yudin's database. Early-type(O7e-B2e) Be stars were found to exhibit a roughly uniform spread ofintrinsic rotation speed that extends from 40%-60% up to 100% ofcritical. Late-type (B3e-A0e) Be stars exhibit progressively narrowerranges of rotation speed as the effective temperature decreases; thelower limit rises to reach critical rotation for the coolest Be stars.The derived lower limits on equatorial rotation speed representconservative threshold rotation rates for the onset of the Bephenomenon. The significantly subcritical speeds found for early-type Bestars represent strong constraints on physical models of angularmomentum deposition in Be star disks.

Profiles of Very Weak Diffuse Interstellar Bands around 6440 Å
Profiles of very weak diffuse interstellar bands (DIBs) between 6400 and6470 Å observed with high resolution and very high S/N aredemonstrated. We show that with the increasing quality of reddenedstellar spectra, the whole spectral range is covered with weak or veryweak DIBs-at least one every 2-3 Å. We also present the details ofthe profiles of a few stronger features; the presence of substructuresresembles the profiles of strong DIBs observed in high resolution duringthe last decade and supports the hypothesis of a molecular origin of atleast a majority of DIBs.

X-Ray Counterparts of Runaway Stars
An X-ray search for possible compact companions of runaway OB stars hasbeen conducted using pointed ROSAT observations. Of a list of 71 runawaystars, ROSAT exposures were available for 24, of which 13 are detected.These numbers are nearly 3 times larger than for a previously studiedEinstein sample, and spectral information is exploited as well.Luminosities, hardness ratios, and long-term variability are as fornormal OB stars and do not suggest the presence of collapsed companions.A result like this is often interpreted as support for dynamicalejection from a dense group rather than a supernova event in a binary asa production process for runaway stars. There are, however, severalcircumstances that may adversely affect the observability of a compactcompanion, or after a supernova explosion systems may be disruptedbecause of the large natal kick velocity imparted to the neutron star asa result of asymmetries in the explosions. It is noted that there isactually evidence for both of these production routes and that they maybe expected to occur sequentially in the evolution of OB associations.

Quantitative H and K band spectroscopy of Galactic OB-stars at medium resolution
In this paper we have analyzed 25 Galactic O and early B-stars by meansof H and K band spectroscopy, with the primary goal to investigate towhat extent a lone near-IR spectroscopy is able to recover stellar andwind parameters derived in the optical. Most of the spectra have beentaken with subaru-ircs, at an intermediate resolution of 12 000, andwith a very high S/N, mostly on the order of 200 or better. In order tosynthesize the strategic H/He lines, we have used our recent,line-blanketed version of fastwind (Puls et al. 2005, A&A, 435,669). In total, seven lines have been investigated, where for two starswe could make additional use of the Hei2.05 singlet which has beenobserved with irtf-cshell. Apart from Brγ and Heii2.18, the otherlines are predominately formed in the stellar photosphere, and thusremain fairly uncontaminated from more complex physical processes,particularly clumping. First we investigated the predicted behaviour ofthe strategic lines. In contradiction to what one expects from theoptical in the O-star regime, almost all photospheric H/Hei/Heii H/Kband lines become stronger if the gravity decreases. Concerning H andHeii, this finding is related to the behaviour of Stark broadening as afunction of electron density, which in the line cores is different formembers of lower (optical) and higher (IR) series. Regarding Hei, thepredicted behaviour is due to some subtle NLTE effects resulting in astronger overpopulation of the lower level when the gravity decreases.We have compared our calculations with results from the alternative NLTEmodel atmosphere code cmfgen (Hillier & Miller 1998, ApJ, 496, 407).In most cases, we found reasonable or nearly perfect agreement. Only theHei2.05 singlet for mid O-types suffers from some discrepancy, analogouswith findings for the optical Hei singlets. For most of our objects, weobtained good fits, except for the line cores of Brγ in earlyO-stars with significant mass-loss. Whereas the observations showBrγ mostly as rather symmetric emission lines, the models predicta P Cygni type profile with strong absorption. This discrepancy (whichalso appears in lines synthesized by cmfgen) might be an indirect effectof clumping. After having derived the stellar and wind parameters fromthe IR, we have compared them to results from previous optical analyses.Overall, the IR results coincide in most cases with the optical oneswithin the typical errors usually quoted for the correspondingparameters, i.e., an uncertainty in T_eff of 5%, in log g of 0.1 dex andin {dot M} of 0.2 dex, with lower errors at higher wind densities.Outliers above the 1-σ level where found in four cases withrespect to log g and in two cases for {dot M}.

To see or not to see a bow shock. Identifying bow shocks with Hα allsky surveys
OB-stars have the highest luminosities and strongest stellar winds ofall stars, which enables them to interact strongly with theirsurrounding ISM, thus creating bow shocks. These offer us an idealopportunity to learn more about the ISM. They were first detected andanalysed around runaway OB-stars using the IRAS allsky survey by vanBuren et al. (1995, AJ, 110, 2614). Using the geometry of such bowshocks information concerning the ISM density and its fluctuations canbe gained from such infrared observations. As to help to improve the bowshock models, additional observations at other wavelengths, e.g.Hα, are most welcome. However due to their low velocity these bowshocks have a size of ˜ 1°, and could only be observed as awhole with great difficulties. In the light of the new Hα allskysurveys (SHASSA/VTSS) this is no problem any more. We developeddifferent methods to detect bow shocks, e.g. the improved determinationof their symmetry axis with radial distance profiles. Using twoHα-allsky surveys (SHASSA/VTSS), we searched for bow shocks andcompared the different methods. From our sample we conclude, that thecorrelation between the direction of both proper motion and the symmetryaxis determined with radial distance profile is the most promisingdetection method. We found eight bow shocks around HD17505, HD 24430, HD48099, HD 57061, HD92206, HD 135240, HD149757, and HD 158186 from 37 candidatestaken from van Buren et al. (1995, AJ, 110, 2614). Additionally to thetraditional determination of ISM parameters using the standoff distanceof the bow shock, another approach was chosen, using the thickness ofthe bow-shock layer. Both methods lead to the same results, yieldingdensities (˜ 1 cm-3) and the maximal temperatures (˜104 K), that fit well to the up-to-date picture of the WarmIonised Medium.

Correlations between diffuse interstellar bands and atomic lines
We present and discuss correlations between strengths of the well-known,strong interstellar atomic lines of KI and CaII, and four selected,strong unidentified diffuse interstellar bands (DIBs): 5780, 5797, 5850and 6614. In order to analyse a homogeneous sample of echellehigh-resolution spectra it has been chosen to use measurements fromTerskol Observatory in Northern Caucasus plus a selected number ofhigher resolution observations performed using other instruments. Wedemonstrate that the strength of certain DIBs correlate well withneutral potassium lines and to a much lower degree with ionized calciumlines. This fact suggests that the degree of irradiation of a cloud withUV photons, capable to ionize interstellar atoms, plays a crucial rolein the formation/maintenance of certain molecular species: possiblecarriers of DIBs.

A Galactic O Star Catalog
We have produced a catalog of 378 Galactic O stars with accuratespectral classifications that is complete for V<8 but includes manyfainter stars. The catalog provides cross-identifications with othersources; coordinates (obtained in most cases from Tycho-2 data);astrometric distances for 24 of the nearest stars; optical (Tycho-2,Johnson, and Strömgren) and NIR photometry; group membership,runaway character, and multiplicity information; and a Web-based versionwith links to on-line services.

A Uniform Database of 2.2-16.5 μm Spectra from the ISOCAM CVF Spectrometer
We present all ISOCAM circular variable filter (CVF) spectra that covermore than one-third of the 2.2-16.5 μm spectral range of theinstrument. The 364 spectra have been classified according to theclassification system of Kraemer et al., as modified by Hodge et al. toaccount for the shorter wavelength range. Prior to classification, thespectra were processed and recalibrated to create a uniform database.Aperture photometry was performed at each wavelength centered on thebrightest position in each image field and the various spectral segmentsmerged into a single spectrum. The aperture was the same for all scalesizes of the images. Since this procedure differs fundamentally fromthat used in the initial ISOCAM calibration, a recalibration of thespectral response of the instrument was required for the aperturephotometry. The recalibrated spectra and the software used to createthem are available to the community on-line via the ISO Data Archive.Several new groups were added to the KSPW system to describe spectrawith no counterparts in either the SWS or PHT-S databases: CA, E/SA,UE/SA, and SSA. The zodiacal dust cloud provides the most commonbackground continuum to the spectral features, visible in almost 40% ofthe processed sources. The most characteristic and ubiquitous spectralfeatures observed in the CVF spectral atlas are those of theunidentified infrared bands (UIR), which are typically attributed toultraviolet-excited fluorescence of large molecules containing aromatichydrocarbons. The UIR features commonly occur superimposed on thezodiacal background (18%) but can also appear in conjunction with otherspectral features, such as fine-structure emission lines or silicateabsorption. In at least 13 of the galaxies observed, the pattern of UIRemission features has been noticeably shifted to longer wavelengths.Based on observations with the Infrared Space Observatory, a EuropeanSpace Agency (ESA) project with instruments funded by ESA Member States(especially the Principal Investigator countries: France, Germany, theNetherlands, and the United Kingdom) and with the participation of theInstitute of Space and Astronautical Science (ISAS) and the NationalAeronautics and Space Administration (NASA).

On the class of Oe stars\fnmsep
We present high-quality spectra of the majority of stars that have beenclassified as Oe and find that their published spectral types aregenerally too early, most likely due to infilling of He I lines. As amatter of fact, all stars classified as Oe actually fall inside therange O9-B0 with the important exception of HD 155806 (O7.5 III) andperhaps HD 39680 (difficult to classify, but likely O8.5 V).Observations of a sample of objects with published spectral types in theO9-B0 range previously classified as peculiar or emission-line starsfail to reveal any new Oe star with spectral type earlier than O9.5.Most objects classified as peculiar in ``classical'' literature showsigns of binarity in our spectra, but no spectral anomalies. We concludethat there is likely a real decline in the fraction of Be stars forspectral types earlier than B0, not due to observational bias. The fewOe stars with spectral types earlier than O9.5 deserve detailedinvestigation in order to provide constraints on the physical reasons ofthe Be phenomenon.Based on observations obtained at the Isaac Newton Telescope (La Palma,Spain).

On the Hipparcos parallaxes of O stars
We compare the absolute visual magnitude of the majority of bright Ostars in the sky as predicted from their spectral type with the absolutemagnitude calculated from their apparent magnitude and the Hipparcosparallax. We find that many stars appear to be much fainter thanexpected, up to five magnitudes. We find no evidence for a correlationbetween magnitude differences and the stellar rotational velocity assuggested for OB stars by Lamers et al. (1997, A&A, 325, L25), whosesmall sample of stars is partly included in ours. Instead, by means of asimulation we show how these differences arise naturally from the largedistances at which O stars are located, and the level of precision ofthe parallax measurements achieved by Hipparcos. Straightforwardlyderiving a distance from the Hipparcos parallax yields reliable resultsfor one or two O stars only. We discuss several types of bias reportedin the literature in connection with parallax samples (Lutz-Kelker,Malmquist) and investigate how they affect the O star sample. Inaddition, we test three absolute magnitude calibrations from theliterature (Schmidt-Kaler et al. 1982, Landolt-Börnstein; Howarth& Prinja 1989, ApJS, 69, 527; Vacca et al. 1996, ApJ, 460, 914) andfind that they are consistent with the Hipparcos measurements. AlthoughO stars conform nicely to the simulation, we notice that some B stars inthe sample of \citeauthor{La97} have a magnitude difference larger thanexpected.

Stellar and wind parameters of Galactic O-stars. The influence of line-blocking/blanketing
We have re-analyzed the Galactic O-star sample from \citet{puls96} bymeans of line-blanketed NLTE model atmospheres in order to investigatethe influence of line-blocking/blanketing on the derived parameters. Theanalysis has been carried out by fitting the photospheric and wind linesfrom H and He. In most cases we obtained a good fit, but we have alsofound certain inconsistencies which are probably related to a stillinadequate treatment of the wind structure. These inconsistenciescomprise the line cores of Hγ and Hβ insupergiants (the synthetic profiles are too weak when the mass-loss rateis determined by matching Hα) and the ``generalizeddilution effect'' (cf. \citealt{vo89}) which is still present in He I4471 of cooler supergiants and giants.Compared to pure H/He plane-parallel models we found a decrease ineffective temperatures which is largest at earliest spectral types andfor supergiants (with a maximum shift of roughly 8000 K). This findingis explained by the fact that line-blanketed models of hot stars havephotospheric He ionization fractions similar to those from unblanketedmodels at higher Teff and higher log g. Consequently, anyline-blanketed analysis based on the He ionization equilibrium resultsin lower Teff-values along with a reduction of either log gor helium abundance (if the reduction of log g is prohibited by theBalmer line wings). Stellar radii and mass-loss rates, on the otherhand, remain more or less unaffected by line-blanketing.We have calculated ``new'' spectroscopic masses and compared them withprevious results. Although the former mass discrepancy \citep{h92}becomes significantly reduced, a systematic trend for masses below 50Msun seems to remain: The spectroscopically derived valuesare smaller than the ``evolutionary masses'' by roughly 10Msun. Additionally, a significant fraction of our samplestars stays over-abundant in He, although the actual values were foundto be lower than previously determined.Also the wind-momentum luminosity relation (WLR) changes because oflower luminosities and almost unmodified wind-momentum rates. Comparedto previous results, the separation of the WLR as a function ofluminosity class is still present but now the WLR for giants/dwarfs isconsistent with theoretical predictions.We argue that the derived mass-loss rates of stars withHα in emission are affected by clumping in the lowerwind region. If the predictions from different and independenttheoretical simulations (\citealt {Vink00, Paul03, puls03a}) that theWLR should be independent of luminosity class were correct, a typicalclumping factor <ρ2>/<ρ>2 ≈5 should be derived by ``unifying'' the different WLRs.Based upon observations obtained at the INT and the European SouthernObservatory, La Silla, Chile. The INT is operated on the island of LaPalma by the ING in the Spanish Observatorio de El Roque de losMuchachos of the Instituto de Astrofísica de Canarias.Appendix A in only available in electronic form athttp://www.edpsciences.org

On the relation between diffuse bands and column densities of H2, CH and CO molecules
Mutual relations between column densities of H2, CH and COmolecules as well as between the latter and strengths of the major 5780and 5797 diffuse bands are presented and discussed. The CH radical seemsto be a good H2 tracer, possibly better than CO. It is alsodemonstrated that the molecular fraction of the H2 moleculeis correlated with an intensity ratio of 5797 and 5780 DIBs, suggestingthe possible formation of narrow DIB carriers in denser clouds,dominated by molecular hydrogen and reasonably shielded from ionizing UVradiation by small dust grains.Tables 1 and 2 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/414/949

Toward an adequate method to isolate spectroscopic families of diffuse interstellar bands
We divide some of the observed diffuse interstellar bands (DIBs) intofamilies that appear to have the spectral structure of single species.Three different methods are applied to separate such families, exploringthe best approach for future investigations of this type. Starting witha statistical treatment of the data, we found that statistical methodsby themselves give insufficient results. Two other methods of dataanalysis (`averaging equivalent widths' and `investigating the figureswith arranged spectrograms') were found to be more useful as tools forfinding the spectroscopic families of DIBs. On the basis of thesemethods, we suggest some candidates as `relatives' of 5780- and5797-Å bands.

Fast Line-Profile Variability in the Spectra of O Stars
A program of the search for and analysis of profile variability in thespectra of bright O supergiants with a time resolution of 5-30 min isdescribed. Preliminary results of the spectroscopic observations of thestars lambda Ori, alpha Cam, and 19 Cep with the 1-m SpecialAstrophysical Observatory telescope in 2001 are presented. Line-profilevariability was detected in the spectra of all the stars studied;variability in the H_alpha and C III lambda5696 lines in the spectrum oflambda Ori has been found for the first time. The variability amplitudeis 4-5% for 19 Cep and 1-2% for alpha Cam and lambda Ori on time scalesfrom several hours to 3 or 4 days, and the width of the variablefeatures reaches 2 Angstroms (100 km/s). We detected cyclical variationsin the He II lambda4686 and C III lambda5696 line profiles in thespectrum of lambda Ori on time scales of 1.3-1.6 days. Rapid profilevariations on time scales of 3.5-7 h were found in the violet parts ofthe H_alpha and He I lambda4715 line profiles in the spectrum of lambdaOri A.

The total-to-selective extinction ratio determined from near IR photometry of OB stars
The paper presents an extensive list of the total to selectiveextinction ratios R calculated from the infrared magnitudes of 597 O andB stars using the extrapolation method. The IR magnitudes of these starswere taken from the literature. The IR colour excesses are determinedwith the aid of "artificial standards" - Wegner (1994). The individualand mean values of total to selective extinction ratios R differ in mostcases from the average value R=3.10 +/-0.05 - Wegner (1993) in differentOB associations. The relation between total to selective extinctionratios R determined in this paper and those calculated using the "methodof variable extinction" and the Cardelli et al. (1989) formulae isdiscussed. The R values presented in this paper can be used to determineindividual absolute magnitudes of reddened OB stars with knowntrigonometric parallaxes.

Optical spectroscopy of X-Mega targets - IV. CPD - 59°2636: a new O-type multiple system in the Carina Nebula
High-resolution optical spectroscopy of CPD - 59°2636, one of theO-type stars in the open cluster Trumpler 16 in the Carina Nebula,reveals this object to be a multiple system displaying triple lineswhich we label as components A, B and C of spectral types O7 V, O8 V andO9 V, respectively. From our radial velocity measurements we find thatthe components A and B form a close binary with a period of 3.6284 d,and we obtain the first circular radial velocity orbit for this systemwith semi-amplitudes of 184 and 192 km s-1, leading tominimum masses of 10.1 and 9.7 Msolar. We find that thecomponent C is a single lined binary with a period of 5.034 d andsemi-amplitude of 48 km s-1. We also analyse the X-rayradiation from CPD - 59°2636, finding neither appreciableoverluminosity nor phase-related X-ray flux variations.

Wind variability of B supergiants. IV. A survey of IUE time-series data of 11 B0 to B3 stars
We present the most suitable data sets available in the InternationalUltraviolet Explorer (IUE) archive for the study of time-dependentstellar winds in early B supergiants. The UV line profile variability in11 B0 to B3 stars is analysed, compared and discussed, based on 16separate data sets comprising over 600 homogeneously reducedhigh-resolution spectrograms. The targets include ``normal'' stars withmoderate rotation rates and examples of rapid rotators. A gallery ofgrey-scale images (dynamic spectra) is presented, which demonstrates therichness and range of wind variability and highlights differentstructures in the winds of these stars. This work emphasises thesuitability of B supergiants for wind studies, under-pinned by the factthat they exhibit unsaturated wind lines for a wide range of ionization.The wind activity of B supergiants is substantial and has highly variedcharacteristics. The variability evident in individual stars isclassified and described in terms of discrete absorption components,spontaneous absorption, bowed structures, recurrence, and ionizationvariability and stratification. Similar structures can occur in stars ofdifferent fundamental parameters, but also different structures mayoccur in the same star at a given epoch. We discuss the physicalphenomena that may be associated with the spectral signatures. Thediversity of wind patterns evident likely reflects the role of stellarrotation and viewing angle in determining the observationalcharacteristics of azimuthally extended structure rooted at the stellarsurface. In addition, SEI line-synthesis modelling of the UV wind linesis used to provide further information about the state of the winds inour program stars. Typically the range, implied by the line profilevariability, in the product of mass-loss rate and ion fraction (mdotq_i) is a factor of ~ 1.5, when integrated between 0.2 and 0.9 v_infty ;it can however be several times larger over localised velocity regions.At a given effective temperature the mean relative ion ratios can differby a factor of 5. The general excess in predicted (forward-scattered)emission in the low velocity regime is discussed in terms of structuredoutflows. Mean ion fractions are estimated over the B0 to B1 spectralclasses, and trends in the ionic ratios as a function of wind velocityare described. The low values obtained for the ion fractions of UVresonance lines may reflect the role of clumping in the wind.

On the polarimetric variability of bright O-type stars
Polarimetric data associated with multi-parameter observationalcampaigns of selected bright O-type stars and their variable winds, areanalysed in relation to the outcomes of the UV and optical spectroscopicstudies. For the stars xi Per and lambda Cep, individual measurementuncertainties are Delta p ~ +/-0.0002 with nightly mean uncertainties ofDelta p ~ +/-0.00007. Although variability is apparent on anight-to-night basis, with differences in delta p ~ 0.0002, nocorrelations are found between these and the periodic behavioursassociated with the stellar Si IV and Hα lines. Similarpolarimetric variability is seen in the data for the standard star phiCas used as a reference in this observing campaign. It is suggested thatall of these low level fluctuations are not intrinsic to the stars butare engendered by structured instrumental polarization in thediffraction pattern and depolarization effects in combination withinconsistent target acquisition and with variable seeing conditions inthe Earth's atmosphere. Reassessment of older data for lambda Cep fromHayes (\cite{hayes2}) also supports this thesis.

Profiles of blue and infrared diffuse interstellar bands
The paper presents a survey of profiles of reasonably strong diffuseinterstellar bands (DIBs) based on the extensive set of high-resolutionspectra acquired with the aid of echelle spectrographs installed at the2-m Terskol, 2-m Pic du Midi and 1-m SAO telescopes. The surveyeddiffuse interstellar bands cover the spectral ranges of blue andnear-infrared, i.e the DIBs not surveyed by Krełowski &Schmidt. The possible modifications caused by stellar and telluric linesare discussed. The very broad features such as 4430 are not discussedbecause the shapes of their profiles, extracted from echelle spectra,are very uncertain. The signal-to-noise (S/N) ratios of the spectra arenot high enough to enable discussion of the profiles of numerous weakinterstellar features discovered recently.

Chemical Abundances of OB Stars in Five OB Associations
We present LTE abundances of magnesium, aluminum, sulfur, and iron andnon-LTE abundances of carbon, nitrogen, oxygen, and silicon for a sampleof 15 slowly rotating B stars belonging to five OB associations: CygOB3, Cyg OB7, Lac OB1, Vul OB1, and Cep OB3. These OB associations lieon the Galactic plane and are situated within 3 kpc of the Sun. Of theeight elements sampled, non-LTE abundances for C, N, O, and Si, as wellas LTE abundances for Al and Fe, generally show subsolar abundances,with typical underabundances of ~0.2-0.4 dex. The LTE abundances for Mgand S tend to fall closer to solar values in the five associations.Whether the somewhat larger abundances derived for Mg and S, relative tothe other six elements studied, are significantly different will requirefurther work, while the modest, but persistent, underabundances(relative to solar) found for the other elements confirm a number ofprevious studies of young disk OB stars lying relatively near to theSun. The five associations studied here do not span a significant rangeof Galactocentric distances; however, their derived abundances agreewith what would be expected based upon previous studies that have mappedabundance versus Galactocentric distance and measured abundancegradients in the Milky Way disk.

A possible sets of diffuse bands originating at the same carrier
This paper discusses measurements of eight selected diffuse interstellarbands (DIBs): lambda lambda 5793, 5809, 5819, 5828, 6196, 6397, 6614 and6660 performed in high resolution, high S/N spectra of 41 reddenedstars. Central depths, considered less error-prone than equivalentwidths, are measured and mutual correlations between the selected DIBsare analyzed. Tight correlations between the DIBs: 5809, 6196, 6614 and6660 may suggest their common origin despite their widths differing by afactor of up to 2. The performed simulations prove that this fact doesnot preclude a common, molecular carrier of such features.

The Cygnus superbubble revisited
The Orion local spiral arm is seen tangential towards the Cygnus region.Intense radio emission with quite a complex morphology is observed,which appears to be surrounded by strong soft X-ray emission. Thisremarkable X-ray structure is known as the Cygnus superbubble. Wecompare a recent 1.4 GHz radio continuum and polarization map from theEffelsberg 100-m telescope with X-ray data from the ROSAT all-sky surveyof this area. Including available survey data of the infrared, H I andCO emission, we investigate a number of high latitude features, whichare physically related to one of the Cygnus OB associations. These OBassociations, however, are located along the local arm at differentdistances. Our results support the view that the Cygnus superbubble isnot a physical unity, but results from a projection of unrelated X-rayemitting features at different distances blown out from the local armseen along the line of sight.

Statistical analysis of intrinsic polarization, IR excess and projected rotational velocity distributions of classical Be stars
We present the results of statistical analyses of a sample of 627 Bestars. The parameters of intrinsic polarization (p*),projected rotational velocity (v sin i), and near IR excesses have beeninvestigated. The values of p* have been estimated for a muchlarger and more representative sample of Be stars (~490 objects) thanpreviously. We have confirmed that most Be stars of early spectral typehave statistically larger values of polarization and IR excesses incomparison with the late spectral type stars. It is found that thedistributions of p* diverge considerably for the differentspectral subgroups. In contrast to late spectral types (B5-B9.5), thedistribution of p* for B0-B2 stars does not peak at the valuep*=0%. Statistically significant differences in the meanprojected rotational velocities (/line{vsin i}) are found for differentspectral subgroups of Be stars in the sense that late spectral typestars (V luminosity class) generally rotate faster than early types, inagreement with previously published results. This behaviour is, however,not obvious for the III-IV luminosity class stars. Nevertheless, thecalculated values of the ratio vt/vc of the truerotational velocity, vt, to the critical velocity forbreak-up, vc, is larger for late spectral type stars of allluminosity classes. Thus, late spectral type stars appear to rotatecloser to their break-up rotational velocity. The distribution of nearIR excesses for early spectral subgroups is bi-modal, the position ofthe second peak displaying a maximum value E(V-L)~ 1 . m 3for O-B1.5 stars, decreasing to E(V-L)~0. m8 for intermediatespectral types (B3-B5). It is shown that bi-modality disappears for latespectral types (B6-B9.5). No correlations were found betweenp* and near IR excesses and between E(V-L) and vsin i for thedifferent subgroups of Be stars. In contrast to near IR excesses, arelation between p* and far IR excesses at 12 mu m is clearlyseen. A clear relation between p* and vsin i (as well asbetween p* and /line{vsin i}/vc) is found by thefact that plots of these parameters are bounded by a ``triangular"distribution of p*: vsin i, with a decrease of p*towards very small and very large vsin i (and /line{vsini}/vc) values. The latter behaviour can be understood in thecontext of a larger oblateness of circumstellar disks for the stars witha rapid rotation. From the analysis of correlations between differentobservational parameters we conclude that circumstellar envelopes forthe majority of Be stars are optically thin disks with the range of thehalf-opening angle of 10degr

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:はくちょう座
Right ascension:21h18m27.20s
Declination:+43°56'45.0"
Apparent magnitude:5
Distance:10000000 parsecs
Proper motion RA:6.2
Proper motion Dec:-9.9
B-T magnitude:4.948
V-T magnitude:5.023

Catalogs and designations:
Proper Names
Flamsteed68 Cyg
HD 1989HD 203064
TYCHO-2 2000TYC 3181-836-1
USNO-A2.0USNO-A2 1275-15288347
BSC 1991HR 8154
HIPHIP 105186

→ Request more catalogs and designations from VizieR