Home     Getting Started     New Pictures     Picture of the Day     Blog New!     Login  

HD 93083 (Macondo)


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Planetary Formation Scenarios Revisited: Core-Accretion versus Disk Instability
The core-accretion and disk instability models have so far been used toexplain planetary formation. These models have different conditions,such as planet mass, disk mass, and metallicity for formation of gasgiants. The core-accretion model has a metallicity condition([Fe/H]>-1.17 in the case of G-type stars), and the mass of planetsformed is less than 6 times that of the Jupiter mass MJ. Onthe other hand, the disk instability model does not have the metallicitycondition, but requires the disk to be 15 times more massive than theminimum mass solar nebulae model. The mass of planets formed is morethan 2 MJ. These results are compared to the 161 detectedplanets for each spectral type of the central stars. The results showthat 90% of the detected planets are consistent with the core-accretionmodel regardless of the spectral type. The remaining 10% are not in theregion explained by the core-accretion model, but are explained by thedisk instability model. We derived the metallicity dependence of theformation probability of gas giants for the core-accretion model.Comparing the result with the observed fraction having gas giants, theyare found to be consistent. On the other hand, the observation cannot beexplained by the disk instability model, because the condition for gasgiant formation is independent of the metallicity. Consequently, most ofplanets detected so far are thought to have been formed by thecore-accretion process, and the rest by the disk instability process.

Trojan planets in HD 108874?
Aims.It turned out recently that, in addition to a large planet with asemimajor axis a ˜ 1 AU and a low eccentricity (e ˜ 0.07),the extrasolar planetary system HD 108874 harbors another massive planetwith 2.43~AU < a < 2.93 AU. The inner planet is orbiting the G5host star in the habitable zone (=HZ); so that we could establishedstable regions for Earth-like Trojan planets. Methods: We integratedsome 105 orbits of fictitious Trojans around the Lagrangianpoints for up to 107 years and checked the stability of theorbital elements and their chaoticity with the aid of the Fast LyapunovIndicator. Results: It turns out that this multiplanetary system is thefirst one where - with the uncertainties in eccentricity and semimajoraxes of the outer planet - the existence of Trojan terrestrial planetsin stable orbits in the HZ is possible for some combinations of theorbital parameters.

Habitability of Known Exoplanetary Systems Based on Measured Stellar Properties
Habitable planets are likely to be broadly Earth-like in composition,mass, and size. Masses are likely to be within a factor of a few of theEarth's mass. Currently, we do not have sufficiently sensitivetechniques to detect Earth-mass planets, except in rare circumstances.It is thus necessary to model the known exoplanetary systems. Inparticular, we need to establish whether Earth-mass planets could bepresent in the classical habitable zone (HZ) or whether the giantplanets that we know to be present would have gravitationally ejectedEarth-mass planets or prevented their formation. We have answered thisquestion by applying computer models to the 152 exoplanetary systemsknown by 2006 April 18 that are sufficiently well characterized for ouranalysis. For systems in which there is a giant planet, inside the HZ,which must have arrived there by migration, there are two cases: (1)where the migration of the giant planet across the HZ has not ruled outthe existence of Earth-mass planets in the HZ; and (2) where themigration has ruled out existence. For each case, we have determined theproportion of the systems that could contain habitable Earth-massplanets today, and the proportion for which this has been the case forat least the past 1000 Myr (excluding any early heavy bombardment). Forcase 1 we get 60% and 50%, respectively, and for case 2 we get 7% and7%, respectively.

Two Suns in The Sky: Stellar Multiplicity in Exoplanet Systems
We present results of a reconnaissance for stellar companions to all 131radial velocity-detected candidate extrasolar planetary systems known asof 2005 July 1. Common proper-motion companions were investigated usingthe multiepoch STScI Digitized Sky Surveys and confirmed by matching thetrigonometric parallax distances of the primaries to companion distancesestimated photometrically. We also attempt to confirm or refutecompanions listed in the Washington Double Star Catalog, in the Catalogsof Nearby Stars Series by Gliese and Jahreiß, in Hipparcosresults, and in Duquennoy & Mayor's radial velocity survey. Ourfindings indicate that a lower limit of 30 (23%) of the 131 exoplanetsystems have stellar companions. We report new stellar companions to HD38529 and HD 188015 and a new candidate companion to HD 169830. Weconfirm many previously reported stellar companions, including six starsin five systems, that are recognized for the first time as companions toexoplanet hosts. We have found evidence that 20 entries in theWashington Double Star Catalog are not gravitationally bound companions.At least three (HD 178911, 16 Cyg B, and HD 219449), and possibly five(including HD 41004 and HD 38529), of the exoplanet systems reside intriple-star systems. Three exoplanet systems (GJ 86, HD 41004, andγ Cep) have potentially close-in stellar companions, with planetsat roughly Mercury-Mars distances from the host star and stellarcompanions at projected separations of ~20 AU, similar to the Sun-Uranusdistance. Finally, two of the exoplanet systems contain white dwarfcompanions. This comprehensive assessment of exoplanet systems indicatesthat solar systems are found in a variety of stellar multiplicityenvironments-singles, binaries, and triples-and that planets survive thepost-main-sequence evolution of companion stars.

Catalog of Nearby Exoplanets
We present a catalog of nearby exoplanets. It contains the 172 knownlow-mass companions with orbits established through radial velocity andtransit measurements around stars within 200 pc. We include fivepreviously unpublished exoplanets orbiting the stars HD 11964, HD 66428,HD 99109, HD 107148, and HD 164922. We update orbits for 83 additionalexoplanets, including many whose orbits have not been revised sincetheir announcement, and include radial velocity time series from theLick, Keck, and Anglo-Australian Observatory planet searches. Both thesenew and previously published velocities are more precise here due toimprovements in our data reduction pipeline, which we applied toarchival spectra. We present a brief summary of the global properties ofthe known exoplanets, including their distributions of orbital semimajoraxis, minimum mass, and orbital eccentricity.Based on observations obtained at the W. M. Keck Observatory, which isoperated jointly by the University of California and the CaliforniaInstitute of Technology. The Keck Observatory was made possible by thegenerous financial support of the W. M. Keck Foundation.

Chemical Composition of the Planet-harboring Star TrES-1
We present a detailed chemical abundance analysis of the parent star ofthe transiting extrasolar planet TrES-1. Based on high-resolution KeckHIRES and Hobby-Eberly Telescope HRS spectra, we have determinedabundances relative to the Sun for 16 elements (Na, Mg, Al, Si, Ca, Sc,Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Y, and Ba). The resulting averageabundance of <[X/H]>=-0.02+/-0.06 is in good agreement withinitial estimates of solar metallicity based on iron. We compare theelemental abundances of TrES-1 with those of the sample of stars withplanets, searching for possible chemical abundance anomalies. TrES-1appears not to be chemically peculiar in any measurable way. Weinvestigate possible signs of selective accretion of refractory elementsin TrES-1 and other stars with planets and find no statisticallysignificant trends of metallicity [X/H] with condensation temperatureTc. We use published abundances and kinematic information forthe sample of planet-hosting stars (including TrES-1) and severalstatistical indicators to provide an updated classification in terms oftheir likelihood to belong to either the thin disk or the thick disk ofthe Milky Way. TrES-1 is found to be very likely a member of thethin-disk population. By comparing α-element abundances of planethosts and a large control sample of field stars, we also find thatmetal-rich ([Fe/H]>~0.0) stars with planets appear to besystematically underabundant in [α/Fe] by ~0.1 dex with respect tocomparison field stars. The reason for this signature is unclear, butsystematic differences in the analysis procedures adopted by differentgroups cannot be ruled out.

On the ages of exoplanet host stars
We obtained spectra, covering the CaII H and K region, for 49 exoplanethost (EH) stars, observable from the southern hemisphere. We measuredthe chromospheric activity index, R'{_HK}. We compiled previouslypublished values of this index for the observed objects as well as theremaining EH stars in an effort to better smooth temporal variations andderive a more representative value of the average chromospheric activityfor each object. We used the average index to obtain ages for the groupof EH stars. In addition we applied other methods, such as: Isochrone,lithium abundance, metallicity and transverse velocity dispersions, tocompare with the chromospheric results. The kinematic method is a lessreliable age estimator because EH stars lie red-ward of Parenago'sdiscontinuity in the transverse velocity dispersion vs dereddened B-Vdiagram. The chromospheric and isochrone techniques give median ages of5.2 and 7.4 Gyr, respectively, with a dispersion of 4 Gyr. The medianage of F and G EH stars derived by the isochrone technique is 1-2 Gyrolder than that of identical spectral type nearby stars not known to beassociated with planets. However, the dispersion in both cases is large,about 2-4 Gyr. We searched for correlations between the chromosphericand isochrone ages and L_IR/L* (the excess over the stellarluminosity) and the metallicity of the EH stars. No clear tendency isfound in the first case, whereas the metallicy dispersion seems toslightly increase with age.

Spectroscopic metallicities for planet-host stars: Extending the samples
We present stellar parameters and metallicities for 29 planet-hoststars, as well as for a large volume-limited sample of 53 stars notknown to be orbited by any planetary-mass companion. These stars add tothe results presented in our previous series of papers, providing twolarge and uniform samples of 119 planet-hosts and 94“single” stars with accurate stellar parameters and [Fe/H]estimates. The analysis of the results further confirms that stars withplanets are metal-rich when compared with average field dwarfs.Important biases that may compromise future studies are also discussed.Finally, we compare the metallicity distributions for singleplanet-hosts and planet-hosts in multiple stellar systems. The resultsshow that a small difference cannot be excluded, in the sense that thelatter sample is slighly overmetallic. However, more data are needed toconfirm this correlation.

The HARPS search for southern extra-solar planets. III. Three Saturn-mass planets around HD 93083, HD 101930 and HD 102117
We report on the detection of three Saturn-mass planets discovered withthe HARPS instrument. HD 93083 shows radial-velocity (RV) variationsbest explained by the presence of a companion of 0.37 MJuporbiting in 143.6 days. HD 101930 b has an orbital period of 70.5 daysand a minimum mass of 0.30 MJup. For HD 102117, we presentthe independent detection of a companion with m2 sin{i} =0.14 MJup and orbital period P = 20.7 days. This planet wasrecently detected by Tinney et al. (ApJ, submitted). Activity andbisector indicators exclude any significant RV perturbations of stellarorigin, reinforcing the planetary interpretation of the RV variations.The radial-velocity residuals around the Keplerian fits are 2.0, 1.8 and0.9 m s-1 respectively, showing the unprecedented RV accuracyachieved with HARPS. A sample of stable stars observed with HARPS isalso presented to illustrate the long-term precision of the instrument.All three stars are metal-rich, confirming the now well-establishedrelation between planet occurrence and metallicity. The new planets areall in the Saturn-mass range, orbiting at moderate distance from theirparent star, thereby occupying an area of the parameter space whichseems difficult to populate according to planet formation theories. Asystematic exploration of these regions will provide new constraints onformation scenarios in the near future.

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

K dwarfs and the chemical evolution of the solar cylinder
K dwarfs have lifetimes older than the present age of the Galactic disc,and are thus ideal stars for investigating the chemical evolution of thedisc. We have developed several photometric metallicity indicators for Kdwarfs, based on a sample of accurate spectroscopic metallicities for 34disc and halo G and K dwarfs. The photometric metallicities lead us todevelop a metallicity index for K dwarfs based only on their position inthe colour-absolute-magnitude diagram. Metallicities have beendetermined for 431 single K dwarfs drawn from the Hipparcos catalogue,selecting the stars by absolute magnitude and removing multiple systems.The sample is essentially a complete reckoning of the metal content innearby K dwarfs. We use stellar isochrones to mark the stars by mass,and select a subset of 220 of the stars, which is complete within anarrow mass interval. We fit the data with a model of the chemicalevolution of the solar cylinder. We find that only a modest cosmicscatter is required to fit our age-metallicity relation. The modelassumes two main infall episodes for the formation of the halo-thickdisc and thin disc, respectively. The new data confirm that the solarneighbourhood formed on a long time-scale of the order of 7 Gyr.

The catalogue of nearby stars metallicities.
Not Available

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

Some Cross-Reference Lists for the Catalog of Possible Nearby Stars
Not Available

Possible nearby stars brighter than tenth magnitude
Basic data are compiled for 447 stars brighter than 10th visualmagnitude which may be within 25 pc of the sun and are missing from boththe Gliese (1969) and the Woolley et al. (1970) catalogs of nearbystars. The list includes 245 stars with photometric parallaxes, 17 starswith trigonometric parallaxes, and nine stars with dynamical parallaxes,all of which parallaxes are at least 0.040 arcsec, as well as 176 likelycandidates. The stars are grouped into six categories according to thereliability of absolute-magnitude estimates and ranked within each groupon the basis of calculated distance. The distance estimates incorporatea kinematic correction to the photometric parallaxes which is based onthe size of a star's proper motion. A list of stars brighter than 10thmag which appear in the Gliese but not in the Woolley et al. catalog isalso provided to facilitate cross-reference with existing catalogs ofnearby stars.

Nearby Star Data Published 1969-1978
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1979A&AS...38..423G&db_key=AST

Dwarf K and M stars in the southern hemisphere.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1972AJ.....77..486U&db_key=AST

Luminosities, Temperatures, and Kinematics of K-Type Dwarfs
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1971ApJS...22..389E&db_key=AST

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:ポンプ座
Right ascension:10h44m20.92s
Declination:-33°34'37.3"
Apparent magnitude:8.325
Distance:28.902 parsecs
Proper motion RA:-92.2
Proper motion Dec:-151.7
B-T magnitude:9.523
V-T magnitude:8.424

Catalogs and designations:
Proper NamesMacondo
HD 1989HD 93083
TYCHO-2 2000TYC 7190-2048-1
USNO-A2.0USNO-A2 0525-13398565
HIPHIP 52521

→ Request more catalogs and designations from VizieR