Home     Per cominciare     Nuove immagini     Immagine del giorno     Blog New!     Login  

HD 2453 (GR And)


Contenuti

Immagini

Carica la tua immagine

DSS Images   Other Images


Articoli relazionati

On-line database of photometric observations of magnetic chemically peculiar stars
We present our extensive project of the On-line database ofphotometric observations of magnetic chemically peculiar stars tocollect published data of photometric observations of magneticchemically peculiar (mCP) stars in the optical and near IR regions. Nowthe nascent database contains more than 107 000 photometric measurementsof 102 mCP stars and will be continually supplemented with published ornew photometric data on these and about 150 additional mCP stars. Thisreport describes the structure and organization of the database.Moreover, for the all included data we estimated the error ofmeasurements and the effective amplitudes of the light curves.

Astrophysics in 2005
We bring you, as usual, the Sun and Moon and stars, plus some galaxiesand a new section on astrobiology. Some highlights are short (the newlyidentified class of gamma-ray bursts, and the Deep Impact on Comet9P/Tempel 1), some long (the age of the universe, which will be found tohave the Earth at its center), and a few metonymic, for instance theterm ``down-sizing'' to describe the evolution of star formation rateswith redshift.

Evolutionary state of magnetic chemically peculiar stars
Context: .The photospheres of about 5-10% of the upper main sequencestars exhibit remarkable chemical anomalies. Many of these chemicallypeculiar (CP) stars have a global magnetic field, the origin of which isstill a matter of debate. Aims: .We present a comprehensivestatistical investigation of the evolution of magnetic CP stars, aimedat providing constraints to the theories that deal with the origin ofthe magnetic field in these stars. Methods: .We have collectedfrom the literature data for 150 magnetic CP stars with accurateHipparcos parallaxes. We have retrieved from the ESO archive 142 FORS1observations of circularly polarized spectra for 100 stars. From thesespectra we have measured the mean longitudinal magnetic field, anddiscovered 48 new magnetic CP stars (five of which belonging to the rareclass of rapidly oscillating Ap stars). We have determined effectivetemperature and luminosity, then mass and position in the H-R diagramfor a final sample of 194 magnetic CP stars. Results: .We foundthat magnetic stars with M > 3 ~M_ȯ are homogeneouslydistributed along the main sequence. Instead, there are statisticalindications that lower mass stars (especially those with M ≤2~M_ȯ) tend to concentrate in the centre of the main sequence band.We show that this inhomogeneous age distribution cannot be attributed tothe effects of random errors and small number statistics. Our datasuggest also that the surface magnetic flux of CP stars increases withstellar age and mass, and correlates with the rotation period. For starswith M > 3~M_ȯ, rotation periods decrease with age in a wayconsistent with the conservation of the angular momentum, while for lessmassive magnetic CP stars an angular momentum loss cannot be ruledout. Conclusions: .The mechanism that originates and sustains themagnetic field in the upper main sequence stars may be different in CPstars of different mass.

Magnetic field model for slowly rotating CP-stars. γEqu= HD201601
A magnetic field model is constructed for the extremely slow rotatorγEqu based on measurements of its magnetic field over many yearsand using the “magnetic charge” method. An analysis ofγEqu and of all the data accumulated up to the present on themagnetic field parameters of chemically peculiar stars leads to someinteresting conclusions, of which the main ones are: the fact that theaxis of rotation and the dipole axis are not parallel in γEqu andthe other slowly rotating magnetic stars which we have studiedpreviously is one of the signs that the braking of CP stars does notinvolve the participation of the magnetic field as they evolve “tothe main sequence.” The axes of the magnetic field dipole in slowrotators are oriented arbitrarily with respect to their axes ofrotation. The substantial photometric activity of these CP stars alsoargues against these axes being close. The well-known absence ofsufficiently strong magnetic fields in the Ae/Be Herbig stars alsopresents difficulties for the hypothesis of “magneticbraking” in the “pre-main sequence” stages ofevolution. The inverse relation between the average surface magneticfield Bs and the rotation period P is yet another fact in conflict withthe idea that the magnetic field is involved in the braking of CP stars.We believe that angular momentum loss involving the magnetic field canhardly have taken place during evolution immediately prior “to themain sequence,” rather the slow rotation of CP stars most likelyoriginates from protostellar clouds with low angular momentum. Some ofthe slowly rotating stars have a central dipole magnetic fieldconfiguration, while others have a displaced dipole configuration, wherethe displacement can be toward the positive or the negative magneticpole.

Magnetic field models for HD 116458 and HD 126515
We have modeled the magnetic fields of the slowly rotating stars HD116458 and HD 126515 using the “magnetic charge” technique.HD 116458 has a small angle between its rotation axis and dipole axis(β = 12°), whereas this angle is large for HD 126515 (β =86°). Both stars can be described with a decentered-dipole model,with the respective displacements being r = 0.07 and r = 0.24 in unitsof the stellar radius. The decentered-dipole model is able tosatisfactorily explain the phase relations for the effective field, Be(P), and the mean surface field, B s(P), for both stars, along with thefact that the B e(P) phase relation for HD 126515 is anharmonic. Wediscuss the role of systematic measurement errors possibly resultingfrom instrumental or methodical effects in one or both of the phaserelations. The displacement of the dipole probably reflects realasymmetry of the stellar field structure, and is not due to measurementerrors. Using both phase relations, B e(P) and B s(P), in the modelingconsiderably reduces the influence of the nonuniform distribution ofchemical elements on the stellar surface.

Model of the Magnetic Field of HD 187474
A model is constructed for the magnetic field of the star HD 187474,which has a very long axial rotation period P = 2345d. It turns out thatthe structure of the magnetic field is best described by a model of adisplaced (Δα = 0.1) dipole inclined to the axis of rotationby an angle β = 24°. The star is inclined to the line of sightby an angle i = 86°. Because of the displaced dipole the magnitudeof the magnetic field differs at the poles: Bp = +6300 and 11600 G. AMercator map of the distribution of the magnetic field over the surfaceis obtained. The 7 slowly rotating CP stars studied thus far have anaverage angle β = 62°, which equals the average value for arandom orientation of dipoles.

A catalog of stellar magnetic rotational phase curves
Magnetized stars usually exhibit periodic variations of the effective(longitudinal) magnetic field Be caused by their rotation. Wepresent a catalog of magnetic rotational phase curves, Be vs.the rotational phase φ, and tables of their parameters for 136stars on the main sequence and above it. Phase curves were obtained bythe least squares fitting of sine wave or double wave functions to theavailable Be measurements, which were compiled from theexisting literature. Most of the catalogued objects are chemicallypeculiar A and B type stars (127 stars). For some stars we also improvedor determined periods of their rotation. We discuss the distribution ofparameters describing magnetic rotational phase curves in our sample.All tables and Appendix A are only available in electronic form athttp://www.edpsciences.org

Spectral Classification of Stars in A Supplement to the Bright Star Catalogue
MK spectral types are given for about 584 stars in A Supplement to theBright Star Catalogue. These are compared with Hipparcos parallaxes tocheck the reliability of those classifications. The estimated errors are+/-1.2 subtypes, and 10% of the luminosity classes may be wrong.

Magnetic Model of HD 2453
A model is constructed for the magnetic field of the star HD 2453, whichhas a very long rotation period (P=521d). It is found that the structureof the field corresponds to the model of a dipole shifted by r=0.09Rfrom the center. The angle of inclination of the axis of the dipole tothe axis of rotation, =5°; that is, the star is viewed almost fromits equator of rotation and magnetic equator. This explains the lowamplitude of the phase dependence of the magnetic field, Be(P), and thelow amplitude of the photometric variability. The field at the magneticpoles is equal to Bp=+4400 and -7660 G. The magnetic field parametersturn out to be close to those obtained by Landstreet and Mathys assuminga dipole-quadrupole-octupole model. A Mercator map of the magnetic fielddistribution of HD 2453 is produced.

Catalogue of averaged stellar effective magnetic fields. I. Chemically peculiar A and B type stars
This paper presents the catalogue and the method of determination ofaveraged quadratic effective magnetic fields < B_e > for 596 mainsequence and giant stars. The catalogue is based on measurements of thestellar effective (or mean longitudinal) magnetic field strengths B_e,which were compiled from the existing literature.We analysed the properties of 352 chemically peculiar A and B stars inthe catalogue, including Am, ApSi, He-weak, He-rich, HgMn, ApSrCrEu, andall ApSr type stars. We have found that the number distribution of allchemically peculiar (CP) stars vs. averaged magnetic field strength isdescribed by a decreasing exponential function. Relations of this typehold also for stars of all the analysed subclasses of chemicalpeculiarity. The exponential form of the above distribution function canbreak down below about 100 G, the latter value representingapproximately the resolution of our analysis for A type stars.Table A.1 and its references are only available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/407/631 and Tables 3 to 9are only available in electronic form at http://www.edpsciences.org

Measurements of stellar magnetic fields using synthetic spectrum fitting
A sample of Ap and Bp stars have been investigated with respect to theirsurface magnetic field using synthetic spectrum fitting. The advantageof this technique is the simplicity in determining the surface fieldstrength and the possibility to apply it to objects whose spectrum doesnot display resolved Zeeman components. We show the usefulness of themethod by demonstrations on stellar spectra with resolved Zeemancomponents, where the results have been compared with values based onmeasurements of the Zeeman splitting for the magnetically sensitive FeIi lambda 6149 line. The objects HD 192678 andHD 165474 have been observed over their rotationalperiod to investigate magnetic field variations. The analysis is thenextended to objects where no resolved structure is observed. The rapidlyrotating stars HD 22316 and HD10783 are used as examples where this method is useful toachieve a value of the surface field. The relative intensification ofthe Fe Ii lambda lambda 6147, 6149 lines is investigated in an attemptto understand its relation to the surface magnetic field strength forthe stars HD 22316 and HD 10783. Based on observations obtained with theNordic Optical Telescope, operated on the island of La Palma jointly byDenmark, Finland, Iceland, Norway, and Sweden, in the SpanishObservatorio del Roque de los Muchachos of the Instituto de Astrofisicade Canarias.

A statistical analysis of the magnetic structure of CP stars
We present the results of a statistical study of the magnetic structureof upper main sequence chemically peculiar stars. We have modelled asample of 34 stars, assuming that the magnetic morphology is describedby the superposition of a dipole and a quadrupole field, arbitrarilyoriented. In order to interpret the modelling results, we haveintroduced a novel set of angles that provides one with a convenient wayto represent the mutual orientation of the quadrupolar component, thedipolar component, and the rotation axis. Some of our results aresimilar to what has already been found in previous studies, e.g., thatthe inclination of the dipole axis to the rotation axis is usually largefor short-period stars and small for long-period ones - see Landstreet& Mathys (\cite{Landstreet2000}). We also found that forshort-period stars (approximately P<10 days) the plane containing thetwo unit vectors that characterise the quadrupole is almost coincidentwith the plane containing the stellar rotation axis and the dipole axis.Long-period stars seem to be preferentially characterised by aquadrupole orientation such that the planes just mentioned areperpendicular. There is also some loose indication of a continuoustransition between the two classes of stars with increasing rotationalperiod.

Multiplicity among chemically peculiar stars. II. Cool magnetic Ap stars
We present new orbits for sixteen Ap spectroscopic binaries, four ofwhich might in fact be Am stars, and give their orbital elements. Fourof them are SB2 systems: HD 5550, HD 22128, HD 56495 and HD 98088. Thetwelve other stars are: HD 9996, HD 12288, HD 40711, HD 54908, HD 65339,HD 73709, HD 105680, HD 138426, HD 184471, HD 188854, HD 200405 and HD216533. Rough estimates of the individual masses of the components of HD65339 (53 Cam) are given, combining our radial velocities with theresults of speckle interferometry and with Hipparcos parallaxes.Considering the mass functions of 74 spectroscopic binaries from thiswork and from the literature, we conclude that the distribution of themass ratio is the same for cool Ap stars and for normal G dwarfs.Therefore, the only differences between binaries with normal stars andthose hosting an Ap star lie in the period distribution: except for thecase of HD 200405, all orbital periods are longer than (or equal to) 3days. A consequence of this peculiar distribution is a deficit of nulleccentricities. There is no indication that the secondary has a specialnature, like e.g. a white dwarf. Based on observations collected at theObservatoire de Haute-Provence (CNRS), France.Tables 1 to 3 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/394/151Appendix B is only available in electronic form athttp://www.edpsciences.org

Magnetic AP Stars in the Hertzsprung-Russell Diagram
The evolutionary state of magnetic Ap stars is rediscussed using therecently released Hipparcos data. The distribution of the magnetic Apstars of mass below 3 Msolar in the H-R diagram differs fromthat of the normal stars in the same temperature range at a high levelof significance. Magnetic stars are concentrated toward the center ofthe main-sequence band. This is shown in two forms of the H-R diagram:one where logL is plotted against logTeff and a version moredirectly tied to the observed quantities, showing the astrometry-basedluminosity (Arenou & Luri) against the (B2-G)0 index ofGeneva photometry. In particular, it is found that magnetic fieldsappear only in stars that have already completed at least approximately30% of their main-sequence lifetime. No clear picture emerges as to thepossible evolution of the magnetic field across the main sequence. Hintsof some (loose) relations between magnetic field strength and otherstellar parameters are found: stars with shorter periods tend to havestronger fields, as do higher temperature and higher mass stars. Amarginal trend of the magnetic flux to be lower in more slowly rotatingstars may possibly be seen as suggesting a dynamo origin for the field.No correlation between the rotation period and the fraction of themain-sequence lifetime completed is observed, indicating that the slowrotation in these stars must already have been achieved before theybecame observably magnetic. Based on data from the ESA Hipparcossatellite and on observations collected at the European SouthernObservatory (La Silla, Chile; ESO programs Nos. 43.7-004, 44.7-012,49.7-030, 50.7-067, 51.7-041, 52.7-063, 53.7-028, 54.E-0416, and55.E-0751), at the Observatoire de Haute-Provence (Saint-Michell'Observatoire, France), at Kitt Peak National Observatory, and at theCanada-France-Hawaii Telescope.

Magnetic models of slowly rotating magnetic Ap stars: aligned magnetic and rotation axes
As a result of major surveys carried out during the past decade byMathys and collaborators, we now have measurements with full phasecoverage of several magnetic field moments, including the meanlongitudinal field B_l, the mean field modulus B_s, and in most casesthe mean quadratic field B_mq and mean crossover field B_xover, for asample of 24 chemically peculiar magnetic (Ap) stars. This represents anincrease of a factor of order five in the stellar sample with data ofthis quality, compared to the situation a decade ago. We exploit thisdataset to derive general and statistical properties of the stars in thesample, as follows. First, we fit the available field momentobservations assuming a simple, axisymmetric multipole magnetic fieldexpansion (with dipole, quadrupole, and octupole components) over eachstellar surface. We show that this representation, though not exact,gives an adequate description of the available data for all the stars inthis sample, although the fit parameters are in many cases not unique.We find that many of the stars require an important quadrupole and/oroctupole field component to satisfy the observations, and that some(usually small) deviations from our assumed axisymmetric fielddistributions are certainly present. We examine the inclination i (0<= i <= 90o) of the rotation axis to the line of sightand the obliquity beta (0 <= beta <= 90o) of themagnetic field with respect to the rotation axis, and show that thestars with periods of the order of a month or longer have systematicallysmall values of beta : slowly rotating magnetic stars generally havetheir magnetic and rotation axes aligned to within about 20o,unlike the short period magnetic Ap stars, in which beta is usuallylarge. This is a qualitatively new result, and one which is veryimportant for efforts to understand the evolution of magnetic fields andangular momentum in the magnetic Ap stars.

Analysis of the Photospheric Lines of the Magnetic CP Star HR 7575
The photospheric lines in the visual region of the cool magnetic CP starHR 7575 have been analyzed using a high-dispersion spectrogram obtainedat the Dominion Astrophysical Observatory. The fully line-blanketedATLAS9 model atmospheres of 10-times the solar metal content wereemployed to calculate the elemental abundances. The effectivetemperature T_eff, derived from the optical and ultraviolet energydistributions, points to 8500 +/- 300 K, while the ionization balance ofiron is not reproduced at this effective temperature. The abundancesderived from individual Cr I, Cr II, and Fe II lines apparently dependon their effective Lande factors. This implies that the Cr and Fe linesare intensified by the strong magnetic field on HR 7575. Their abundanceenhancement is estimated to be about 0.7 dex based on a computation ofthe Unno--Beckers equation. The overall abundance patterns of HR 7575are comparable to other cool magnetic CP stars. Of the analyzedelements, only Mg and Sc have nearly solar abundances, while Cr, Mn, Sr,and rare earths are overabundant by 1 to 5 dex.

On the HIPPARCOS photometry of chemically peculiar B, A, and F stars
The Hipparcos photometry of the Chemically Peculiar main sequence B, A,and F stars is examined for variability. Some non-magnetic CP stars,Mercury-Manganese and metallic-line stars, which according to canonicalwisdom should not be variable, may be variable and are identified forfurther study. Some potentially important magnetic CP stars are noted.Tables 1, 2, and 3 are available only in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

The HR-diagram from HIPPARCOS data. Absolute magnitudes and kinematics of BP - AP stars
The HR-diagram of about 1000 Bp - Ap stars in the solar neighbourhoodhas been constructed using astrometric data from Hipparcos satellite aswell as photometric and radial velocity data. The LM method\cite{luri95,luri96} allows the use of proper motion and radial velocitydata in addition to the trigonometric parallaxes to obtain luminositycalibrations and improved distances estimates. Six types of Bp - Apstars have been examined: He-rich, He-weak, HgMn, Si, Si+ and SrCrEu.Most Bp - Ap stars lie on the main sequence occupying the whole width ofit (about 2 mag), just like normal stars in the same range of spectraltypes. Their kinematic behaviour is typical of thin disk stars youngerthan about 1 Gyr. A few stars found to be high above the galactic planeor to have a high velocity are briefly discussed. Based on data from theESA Hipparcos astrometry satellite and photometric data collected in theGeneva system at ESO, La Silla (Chile) and at Jungfraujoch andGornergrat Observatories (Switzerland). Tables 3 and 4 are onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Effective temperatures of AP stars
A new method of determination of the effective temperatures of Ap starsis proposed. The method is based on the fact that the slopes of theenergy distribution in the Balmer continuum near the Balmer jump for``normal" main sequence stars and chemically peculiar stars with thesame Teff are identical. The effective temperaturecalibration is based on a sample of main sequence stars with well knowntemperatures (\cite[Sokolov 1995]{sokolov}). It is shown that theeffective temperatures of Ap stars are derived by this method in goodagreement with those derived by the infrared flux method and by themethod of \cite[Stepien & Dominiczak (1989)]{stepien}. On the otherhand, the comparison of obtained Teff with Teffderived from the color index (B2-G) of Geneva photometry shows a largescatter of the points, nevertheless there are no systematicaldifferences between two sets of the data.

The observed periods of AP and BP stars
A catalogue of all the periods up to now proposed for the variations ofCP2, CP3, and CP4 stars is presented. The main identifiers (HD and HR),the proper name, the variable-star name, and the spectral type andpeculiarity are given for each star as far as the coordinates at 2000.0and the visual magnitude. The nature of the observed variations (light,spectrum, magnetic field, etc.) is presented in a codified way. Thecatalogue is arranged in three tables: the bulk of the data, i.e. thosereferring to CP2, CP3, and CP4 stars, are given in Table 1, while thedata concerning He-strong stars are given in Table 2 and those foreclipsing or ellipsoidal variables are collected in Table 3. Notes arealso provided at the end of each table, mainly about duplicities. Thecatalogue contains data on 364 CP stars and is updated to 1996, October31. This research has made use of the SIMBAD database, operated at CDS,Strasbourg, France.

Spectropolarimetry of magnetic stars. VI. Longitudinal field, crossover and quadratic field: New measurements
New determinations of the mean longitudinal magnetic field, of thecrossover, and of the mean quadratic magnetic field of Ap stars arepresented. They are based on spectra recorded simultaneously in bothcircular polarizations at ESO with the CASPEC spectrograph fed by the3.6 m telescope. This paper discusses 95 observations of 44 stars. Amajor result of this study is the discovery that HD 137509 has apredominantly quadrupolar magnetic field, a strucuture previously foundin only a couple of stars. Improvement or revision of the determinationof the rotation period has been achieved for 3 stars. The stars studiedin this work include 14 rapidly oscillating Ap stars (for 6 of which noprevious attempt to detect a magnetic field had ever been made) and 21Ap stars with spectral lines resolved into their magnetically splitcomponents when observed at high enough dispersion in unpolarized light(for 9 of these stars, no determination of the longitudinal field hadbeen performed before). The observations discussed in this paper havebeen performed between 1989 and 1994, a period during which CASPEC andits Zeeman analyzer have progressively undergone various configurationchanges. The results reported here demonstrate that the polarimetricperformance of the instrument has remained unaltered through thesemodifications. Thanks to the latter, the achieved resolving power wasincreased, which resulted in improved magnetic measurement accuracies.Based on observations collected at the European Southern Observatory (LaSilla, Chile; ESO programmes Nos. 47.7-045 and 49.7-029).

A catalogue of [Fe/H] determinations: 1996 edition
A fifth Edition of the Catalogue of [Fe/H] determinations is presentedherewith. It contains 5946 determinations for 3247 stars, including 751stars in 84 associations, clusters or galaxies. The literature iscomplete up to December 1995. The 700 bibliographical referencescorrespond to [Fe/H] determinations obtained from high resolutionspectroscopic observations and detailed analyses, most of them carriedout with the help of model-atmospheres. The Catalogue is made up ofthree formatted files: File 1: field stars, File 2: stars in galacticassociations and clusters, and stars in SMC, LMC, M33, File 3: numberedlist of bibliographical references The three files are only available inelectronic form at the Centre de Donnees Stellaires in Strasbourg, viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5), or viahttp://cdsweb.u-strasbg.fr/Abstract.html

The mean magnetic field modulus of AP stars
We present new measurements of the mean magnetic field modulus of asample of Ap stars with spectral lines resolved into magnetically splitcomponents. We report the discovery of 16 new stars having thisproperty. This brings the total number of such stars known to 42. Wehave performed more than 750 measurements of the mean field modulus of40 of these 42 stars, between May 1988 and August 1995. The best of themhave an estimated accuracy of 25 - 30 G. The availability of such alarge number of measurements allows us to discuss for the first time thedistribution of the field modulus intensities. A most intriguing resultis the apparent existence of a sharp cutoff at the low end of thisdistribution, since no star with a field modulus (averaged over therotation period) smaller than 2.8 kG has been found in this study. Formore than one third of the studied stars, enough field determinationswell distributed throughout the stellar rotation cycle have beenachieved to allow us to characterize at least to some extent thevariations of the field modulus. These variations are oftensignificantly anharmonic, and it is not unusual for their extrema not tocoincide in phase with the extrema of the longitudinal field (for thefew stars for which enough data exist about the latter). This, togetherwith considerations on the distribution of the relative amplitude ofvariation of the studied stars, supports the recently emerging evidencefor markedly non-dipolar geometry and fine structure of the magneticfields of most Ap stars. New or improved determinations of the rotationperiods of 9 Ap stars have been achieved from the analysis of thevariations of their mean magnetic field modulus. Tentative values of theperiod have been derived for 5 additional stars, and lower limits havebeen established for 10 stars. The shortest definite rotation period ofan Ap star with magnetically resolved lines is 3.4 deg, while thosestars that rotate slowest appear to have periods in excess of 70 or 75years. As a result of this study, the number of known Ap stars withrotation periods longer than 30 days is almost doubled. We brieflyrediscuss the slow-rotation tail of the period distribution of Ap stars.This study also yielded the discovery of radial velocity variations in 8stars. There seems to be a deficiency of binaries with short orbitalperiods among Ap stars with magnetically resolved lines. Based onobservations collected at the European Southern Observatory (La Silla,Chile; ESO programmes Nos. 43.7-004, 44.7-012, 49.7-030, 50.7-067,51.7-041, 52.7-063, 53.7-028, 54.E-0416, and 55.E-0751), at theObservatoire de Haute-Provence (Saint-Michel-l'Observatoire, France), atKitt Peak National Observatory, and at the Canada-France-HawaiiTelescope. Tables 2, 3, and 4 are also available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html.

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

Catalogue of CP stars with references to short time scale variability
A catalogue was compiled which contains all references in the literaturesince 1962 related to variations of CP stars on time scales shorter thanthe rotation period. The role of this catalogue lies in the unbiasedlisting of all available references, and not in a critical evaluation.

A new list of effective temperatures of chemically peculiar stars. II.
Not Available

Some problems of non-reversive CP stars. I. Spatial distribution.
Not Available

Spectrophotometry of Peculiar B-Stars and A-Stars - Part Nineteen - Variability of the Magnetic Cp-Stars
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1993A&AS..101..393A&db_key=AST

Investigation of stellar magnetic fields based on the strengths of spectral lines - Application to Omicron Pegasi and Cool AP Stars
A practical method for simultaneous determinations of H (magnetic field)and xi (microturbulence) in a stellar atmosphere is presented, which isbased on the requirement that the scatter of the abundances derived fromindividual lines should be minimized for the best choice of H and xi.This procedure may be regarded as being an improved and extended versionof the classical Hensberge-De Loore method, since it is based on a 'fineanalysis' technique using a model atmosphere and the detailedZeeman-split components of a line are explicitly taken into account withan approximate treatment of the polarization effect. This method wasfirst applied to the hot Am star O Peg, resulting in H = 2 kG (and xi isabout 1.5 km/s); this H value is fairly consistent with other estimatesbased either on the Stenflo-Lindegren technique or on the line-pairmethod. As an alternative application, surface magnetic fields of fivecool Ap stars were also investigated, showing that the H-values by thismethod agree well with those derived from the method of differentialZeeman broadening and that the classical Hensberge-De Loore techniquetends to yield somewhat underestimated values.

A catalogue of Fe/H determinations - 1991 edition
A revised version of the catalog of Fe/H determinations published by G.Cayrel et al. (1985) is presented. The catalog contains 3252 Fe/Hdeterminations for 1676 stars. The literature is complete up to December1990. The catalog includes only Fe/H determinations obtained from highresolution spectroscopic observations based on detailed spectroscopicanalyses, most of them carried out with model atmospheres. The catalogcontains a good number of Fe/H determinations for stars from open andglobular clusters and for some supergiants in the Magellanic Clouds.

Sottometti un nuovo articolo


Link relazionati

  • - Nessun link trovato -
Sottometti un nuovo link


Membro dei seguenti gruppi:


Osservazione e dati astrometrici

Costellazione:Andromeda
Ascensione retta:00h28m28.57s
Declinazione:+32°26'15.9"
Magnitudine apparente:6.874
Distanza:151.745 parsec
Moto proprio RA:-29.1
Moto proprio Dec:-17.7
B-T magnitude:7.007
V-T magnitude:6.885

Cataloghi e designazioni:
Nomi esattiGR And
HD 1989HD 2453
TYCHO-2 2000TYC 2266-725-1
USNO-A2.0USNO-A2 1200-00216623
HIPHIP 2243

→ Richiesta di ulteriori cataloghi da VizieR