Home     Per cominciare     Nuove immagini     Immagine del giorno     Blog New!     Login  

HD 25704


Contenuti

Immagini

Carica la tua immagine

DSS Images   Other Images


Articoli relazionati

Two distinct halo populations in the solar neighborhood. Evidence from stellar abundance ratios and kinematics
Aims: Precise abundance ratios are determined for 94 dwarf starswith Teff K, -1.6 < [Fe/H] < -0.4, and distances D? 335 pc. Most of them have halo kinematics, but 16 thick-disk starsare included. Methods: Equivalent widths of atomic lines aremeasured from VLT/UVES and NOT/FIES spectra with resolutions R? 55000 and R ? 40 000, respectively. An LTE abundance analysis basedon MARCS models is applied to derive precise differential abundanceratios of Na, Mg, Si, Ca, Ti, Cr, and Ni with respect to Fe. Results: The halo stars fall into two populations, clearly separated in[?/Fe], where ? refers to the average abundance of Mg, Si,Ca, and Ti. Differences in [Na/Fe] and [Ni/Fe] are also present with aremarkably clear correlation between these two abundance ratios. Conclusions: The “high-?” stars may be ancient disk orbulge stars “heated” to halo kinematics by merging satellitegalaxies or they could have formed as the first stars during thecollapse of a proto-Galactic gas cloud. The kinematics of the“low-?” stars suggest that they have been accretedfrom dwarf galaxies, and that some of them may originate from the? Cen progenitor galaxy.Based on observations made with the Nordic Optical Telescope on LaPalma, and on data from the European Southern Observatory ESO/ST-ECFScience Archive Facility.Tables 3 and 4 are also available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/511/L10Figures5-8 and Tables 1-4 are only available in electronic form at http://www.aanda.org

An Overview of the Rotational Behavior of Metal-poor Stars
This paper describes the behavior of the rotational velocity inmetal-poor stars ([Fe/H] <= -0.5 dex) in different evolutionarystages, based on vsin i values from the literature. Our sample iscomprised of stars in the field and some Galactic globular clusters,including stars on the main sequence, the red giant branch (RGB), andthe horizontal branch (HB). The metal-poor stars are, mainly, slowrotators, and their vsin i distribution along the HR diagram is quitehomogeneous. Nevertheless, a few moderate to high values of vsin i arefound in stars located on the main sequence and the HB. We show that theoverall distribution of vsin i values is basically independent ofmetallicity for the stars in our sample. In particular, thefast-rotating main sequence stars in our sample present rotation ratessimilar to their metal-rich counterparts, suggesting that some of themmay actually be fairly young, in spite of their low metallicity, or elsethat at least some of them would be better classified as blue stragglerstars. We do not find significant evidence of evolution in vsin i valuesas a function of position on the RGB; in particular, we do not confirmprevious suggestions that stars close to the RGB tip rotate faster thantheir less-evolved counterparts. While the presence of fast rotatorsamong moderately cool blue HB stars has been suggested to be due toangular momentum transport from a stellar core that has retainedsignificant angular momentum during its prior evolution, we find thatany such transport mechanisms most likely operate very fast as the stararrives on the zero-age HB (ZAHB), since we do not find a link betweenevolution off the ZAHB and vsin i values. We present an extensivetabulation of all quantities discussed in this paper, including rotationvelocities, temperatures, gravities, and metallicities [Fe/H], as wellas broadband magnitudes and colors.

The Geneva-Copenhagen survey of the solar neighbourhood. III. Improved distances, ages, and kinematics
Context: Ages, chemical compositions, velocity vectors, and Galacticorbits for stars in the solar neighbourhood are fundamental test datafor models of Galactic evolution. The Geneva-Copenhagen Survey of theSolar Neighbourhood (Nordström et al. 2004; GCS), amagnitude-complete, kinematically unbiased sample of 16 682 nearby F andG dwarfs, is the largest available sample with complete data for starswith ages spanning that of the disk. Aims: We aim to improve theaccuracy of the GCS data by implementing the recent revision of theHipparcos parallaxes. Methods: The new parallaxes yield improvedastrometric distances for 12 506 stars in the GCS. We also use theparallaxes to verify the distance calibration for uvby? photometryby Holmberg et al. (2007, A&A, 475, 519; GCS II). We add newselection criteria to exclude evolved cool stars giving unreliableresults and derive distances for 3580 stars with large parallax errorsor not observed by Hipparcos. We also check the GCS II scales of T_effand [Fe/H] and find no need for change. Results: Introducing thenew distances, we recompute MV for 16 086 stars, and U, V, W,and Galactic orbital parameters for the 13 520 stars that also haveradial-velocity measurements. We also recompute stellar ages from thePadova stellar evolution models used in GCS I-II, using the new valuesof M_V, and compare them with ages from the Yale-Yonsei andVictoria-Regina models. Finally, we compare the observed age-velocityrelation in W with three simulated disk heating scenarios to show thepotential of the data. Conclusions: With these revisions, thebasic data for the GCS stars should now be as reliable as is possiblewith existing techniques. Further improvement must await consolidationof the T_eff scale from angular diameters and fluxes, and the Gaiatrigonometric parallaxes. We discuss the conditions for improvingcomputed stellar ages from new input data, and for distinguishingdifferent disk heating scenarios from data sets of the size andprecision of the GCS.Full Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/501/941

Beryllium abundances and star formation in the halo and in the thick disk
Context: Beryllium is a pure product of cosmic ray spallation. Thisimplies a relatively simple evolution in time of the beryllium abundanceand suggests its use as a time-like observable. Aims: Our goal is toderive abundances of Be in a sample of 90 stars, the largest sample ofhalo and thick disk stars analyzed to date. We study the evolution of Bein the early Galaxy and its dependence on kinematic and orbitalparameters, and investigate its use as a cosmochronometer. Abundances ofBe, Fe, and α-elements of 73 stars are employed to study theformation of the halo and the thick disk of the Galaxy. Methods:Beryllium abundances are determined from high-resolution, highsignal-to-noise UVES spectra with spectrum synthesis. Atmosphericparameters and abundances of α-elements are adopted from theliterature. Lithium abundances are used to eliminate mixed stars fromthe sample. The properties of halo and thick disk stars are investigatedin diagrams of log(Be/H) vs. [ α/H] , log(Be/H) vs. [Fe/H], and [α/Fe] vs. log(Be/H) and with orbital and kinematic parameters. Results: We present our observational results in various diagrams. (i)In a log(Be/H) vs. [Fe/H] diagram we find a marginal statisticaldetection of a real scatter, above what is expected from measurementerrors, with a larger scatter among halo stars. The detection of thescatter is further supported by the existence of pairs of stars withidentical atmospheric parameters and different Be abundances; (ii) in alog(Be/H) vs. [ α/Fe] diagram, the halo stars separate into twocomponents; one is consistent with predictions of evolutionary models,while the other has too high α and Be abundances and is chemicallyindistinguishable from thick disk stars. This suggests that the halo isnot a single uniform population where a clear age-metallicity relationcan be defined; (iii) In diagrams of R_min vs. [ α/Fe] andlog(Be/H), the thick disk stars show a possible decrease in [α/Fe] with R_min, whereas no dependence of Be with R_min is seen.This anticorrelation suggests that the star formation rate was lower inthe outer regions of the thick disk, pointing towards an inside-outformation. The lack of correlation for Be indicates that it isinsensitive to the local conditions of star formation.Based on observations made with ESO VLT, at Paranal Observatory, underprograms 076.B-0133 and 077.B-0507, and on data obtained from theESO/ST-ECF Science Archive Facility and the UVES Paranal ObservatoryProject 266.D-5655.Tables 1-3, 6 and Appendices A-C are only available in electronic format http://www.aanda.org

Calibration of Strömgren uvby-H? photometry for late-type stars - a model atmosphere approach
Context: The use of model atmospheres for deriving stellar fundamentalparameters, such as T_eff, log g, and [Fe/H], will increase as we findand explore extreme stellar populations where empirical calibrations arenot yet available. Moreover, calibrations for upcoming large satellitemissions of new spectrophotometric indices, similar to the uvby-H?system, will be needed. Aims: We aim to test the power oftheoretical calibrations based on a new generation of MARCS models bycomparisons with observational photomteric data. Methods: Wecalculated synthetic uvby-H? colour indices from synthetic spectra.A sample of 367 field stars, as well as stars in globular clusters, isused for a direct comparison of the synthetic indices versus empiricaldata and for scrutinizing the possibilities of theoretical calibrationsfor temperature, metallicity, and gravity. Results: We show thatthe temperature sensitivity of the synthetic (b-y) colour is very closeto its empirical counterpart, whereas the temperature scale based uponH? shows a slight offset. The theoretical metallicity sensitivityof the m1 index (and for G-type stars its combination withc_1) is somewhat higher than the empirical one, based upon spectroscopicdeterminations. The gravity sensitivity of the synthetic c1index shows satisfactory behaviour when compared to obervations of Fstars. For stars cooler than the sun, a deviation is significant in thec1-(b-y) diagram. The theoretical calibrations of (b-y),(v-y), and c1 seem to work well for Pop II stars and lead toeffective temperatures for globular cluster stars supporting recentclaims that atomic diffusion occurs in stars near the turnoff point ofNGC 6397. Conclusions: Synthetic colours of stellar atmospherescan indeed be used, in many cases, to derive reliable fundamentalstellar parameters. The deviations seen when compared to observationaldata could be due to incomplete linelists but are possibly also due tothe effects of assuming plane-parallell or spherical geometry and LTE.Model colours are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/498/527

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

A catalog of rotational and radial velocities for evolved stars. IV. Metal-poor stars^
Aims.The present paper describes the first results of an observationalprogram intended to refine and extend the existing v sin i measurementsof metal-poor stars, with an emphasis on field evolved stars.Methods: .The survey was carried out with the FEROS and CORALIEspectrometers. For the v sin i measurements, obtained from spectralsynthesis, we estimate an uncertainty of about 2.0 km s-1. Results: .Precise rotational velocities v sin i are presented for alarge sample of 100 metal-poor stars, most of them evolving off themain-sequence. For the large majority of the stars composing the presentsample, rotational velocities have been measured for the first time.

Galactic model parameters for field giants separated from field dwarfs by their 2MASS and V apparent magnitudes
We present a method which separates field dwarfs and field giants bytheir 2MASS and V apparent magnitudes. This method is based onspectroscopically selected standards and is hence reliable. We appliedit to stars in two fields, SA 54 and SA 82, and we estimated a full setof Galactic model parameters for giants including their total localspace density. Our results are in agreement with the ones given in therecent literature.

The lithium content of the Galactic Halo stars
Thanks to the accurate determination of the baryon density of theuniverse by the recent cosmic microwave background experiments, updatedpredictions of the standard model of Big Bang nucleosynthesis now yieldthe initial abundance of the primordial light elements withunprecedented precision. In the case of ^7Li, the CMB+SBBN value issignificantly higher than the generally reported abundances for Pop IIstars along the so-called Spite plateau. In view of the crucialimportance of this disagreement, which has cosmological, galactic andstellar implications, we decided to tackle the most critical issues ofthe problem by revisiting a large sample of literature Li data in halostars that we assembled following some strict selection criteria on thequality of the original analyses. In the first part of the paper wefocus on the systematic uncertainties affecting the determination of theLi abundances, one of our main goal being to look for the "highestobservational accuracy achievable" for one of the largest sets of Liabundances ever assembled. We explore in great detail the temperaturescale issue with a special emphasis on reddening. We derive four sets ofeffective temperatures by applying the same colour {T}_eff calibrationbut making four different assumptions about reddening and determine theLTE lithium values for each of them. We compute the NLTE corrections andapply them to the LTE lithium abundances. We then focus on our "best"(i.e. most consistent) set of temperatures in order to discuss theinferred mean Li value and dispersion in several {T}_eff and metallicityintervals. The resulting mean Li values along the plateau for [Fe/H]≤ 1.5 are A(Li)_NLTE = 2.214±0.093 and 2.224±0.075when the lowest effective temperature considered is taken equal to 5700K and 6000 K respectively. This is a factor of 2.48 to 2.81 (dependingon the adopted SBBN model and on the effective temperature range chosento delimit the plateau) lower than the CMB+SBBN determination. We findno evidence of intrinsic dispersion. Assuming the correctness of theCMB+SBBN prediction, we are then left with the conclusion that the Liabundance along the plateau is not the pristine one, but that halo starshave undergone surface depletion during their evolution. In the secondpart of the paper we further dissect our sample in search of newconstraints on Li depletion in halo stars. By means of the Hipparcosparallaxes, we derive the evolutionary status of each of our samplestars, and re-discuss our derived Li abundances. A very surprisingresult emerges for the first time from this examination. Namely, themean Li value as well as the dispersion appear to be lower (althoughfully compatible within the errors) for the dwarfs than for the turnoffand subgiant stars. For our most homogeneous dwarfs-only sample with[Fe/H] ≤ 1.5, the mean Li abundances are A(L)_NLTE = 2.177±0.071 and 2.215±0.074 when the lowest effective temperatureconsidered is taken equal to 5700 K and 6000 K respectively. This is afactor of 2.52 to 3.06 (depending on the selected range in {T}_eff forthe plateau and on the SBBN predictions we compare to) lower than theCMB+SBBN primordial value. Instead, for the post-main sequence stars thecorresponding values are 2.260±0.1 and 2.235±0.077, whichcorrespond to a depletion factor of 2.28 to 2.52. These results,together with the finding that all the stars with Li abnormalities(strong deficiency or high content) lie on or originate from the hotside of the plateau, lead us to suggest that the most massive of thehalo stars have had a slightly different Li history than their lessmassive contemporaries. In turn, this puts strong new constraints on thepossible depletion mechanisms and reinforces Li as a stellartomographer.

Sulphur abundance in Galactic stars
We investigate sulphur abundance in 74 Galactic stars by using highresolution spectra obtained at ESO VLT and NTT telescopes. For the firsttime the abundances are derived, where possible, from three opticalmultiplets: Mult. 1, 6, and 8. By combining our own measurements withdata in the literature we assemble a sample of 253 stars in themetallicity range -3.2  [Fe/H]  +0.5. Two important features,which could hardly be detected in smaller samples, are obvious from thislarge sample: 1) a sizeable scatter in [S/Fe] ratios around [Fe/H]˜-1; 2) at low metallicities we observe stars with [S/Fe]˜ 0.4, aswell as stars with higher [S/Fe] ratios. The latter do not seem to bekinematically different from the former ones. Whether the latter findingstems from a distinct population of metal-poor stars or simply from anincreased scatter in sulphur abundances remains an open question.

Chemical abundances in 43 metal-poor stars
We have derived abundances of O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Fe,Ni, and Ba for 43 metal-poor field stars in the solar neighbourhood,most of them subgiants or turn-off-point stars with iron abundances[Fe/H] ranging from -0.4 to -3.0. About half of this sample has not beenspectroscopically analysed in detail before. Effective temperatures wereestimated from uvby photometry, and surface gravities primarily fromHipparcos parallaxes. The analysis is differential relative to the Sun,and was carried out with plane-parallel MARCS models. Various sources oferror are discussed and found to contribute a total error of about0.1-0.2 dex for most elements, while relative abundances, such as[Ca/Fe], are most probably more accurate. For the oxygen abundances,determined in an NLTE analysis of the 7774 Å triplet lines, theerrors may be somewhat larger. We made a detailed comparison withsimilar studies and traced the reasons for the, in most cases,relatively small differences. Among the results we find that [O/Fe]possibly increases beyond [Fe/H] = -1.0, though considerably less sothan in results obtained by others from abundances based on OH lines. Wedid not trace any tendency toward strong overionization of iron, andfind the excesses, relative to Fe and the Sun, of the α elementsMg, Si, and Ca to be smaller than those of O. We discuss someindications that also the abundances of different α elementsrelative to Fe vary and the possibility that some of the scatter aroundthe trends in abundances relative to iron may be real. This may supportthe idea that the formation of Halo stars occurred in smaller systemswith different star formation rates. We verify the finding by Gratton etal. (2003b, A&A, 406, 131) that stars that do not participate in therotation of the galactic disk show a lower mean and larger spread in [α/Fe] than stars participating in the general rotation. The latterstars also seem to show some correlation between [ α/Fe] androtation speed. We trace some stars with peculiar abundances, amongthese two Ba stars, HD 17072 and HD196944, the second already known to be rich in s elements.Finally we advocate that a spectroscopic study of a larger sample ofhalo stars with well-defined selection criteria is very important, inorder to add to the very considerable efforts that various groups havealready made.

Chemical Composition in the Globular Cluster M71 from Keck HIRES Spectra of Turnoff Stars
We have made observations with the Keck I telescope and HIRES at aresolution of ~45,000 of five nearly identical stars at the turnoff ofthe metal-rich globular cluster M71. We derive stellar parameters andabundances of several elements. Our mean Fe abundance,[Fe/H]=-0.80+/-0.02, is in excellent agreement with previous clusterdeterminations from both giants and near-turnoff stars. There is noclear evidence for any star-to-star abundance differences orcorrelations in our sample. Abundance ratios of the Fe peak elements(Cr, Ni) are similar to Fe. The turnoff stars in M71 have remarkablyconsistent enhancements of 0.2-0.3 dex in [Si/Fe], [Ca/Fe], and [Ti/Fe],like the red giants. Our [Mg/Fe] ratio is somewhat lower than thatsuggested by other studies. We compare our mean abundances for the fiveM71 stars with field stars of similar metallicity [Fe/H]: eight withhalo kinematics and 17 with disk kinematics. The abundances of theα-fusion products (Mg, Si, Ca, Ti) agree with both samples butseem a closer match to the disk stars. The Mg abundance in M71 is at thelower edge of the disk and halo samples. The neutron-capture elements, Yand Ba, are enhanced relative to solar in the M71 turnoff stars. Ourratio [Ba/Fe] is similar to that of the halo field stars but a factor of2 above that for the disk field stars. The important [Ba/Y] ratio issignificantly lower than M71 giant values; the precluster material mayhave been exposed to a higher neutron flux than the disk stars orself-enrichment has occurred subsequent to cluster star formation. TheNa content of the M71 turnoff stars is remarkably similar to that in thedisk field stars but more than a factor of 2 higher than the halo fieldstar sample. We find [Na/Fe]=+0.14+/-0.04 with a spread less than halfof that found in the red giants in M71. Excluding Mg, the lack ofintracluster α-element variations (turnoff vis-à-visgiants) suggests that the polluting material needed to explain theabundance patterns in M71 did not arise from explosive nucleosynthesisbut in a more traditional s-process environment such as AGB stars. Thedetermination of light s-peak abundances should reveal whether thispollution occurred before or after cluster formation.

Abundance trends in kinematical groups of the Milky Way's disk
We have compiled a large catalogue of metallicities and abundance ratiosfrom the literature in order to investigate abundance trends of severalalpha and iron peak elements in the thin disk and the thick disk of theGalaxy. The catalogue includes 743 stars with abundances of Fe, O, Mg,Ca, Ti, Si, Na, Ni and Al in the metallicity range -1.30 < [Fe/H]< +0.50. We have checked that systematic differences betweenabundances measured in the different studies were lower than randomerrors before combining them. Accurate distances and proper motions fromHipparcos and radial velocities from several sources have been retreivedfor 639 stars and their velocities (U, V, W) and galactic orbits havebeen computed. Ages of 322 stars have been estimated with a Bayesianmethod of isochrone fitting. Two samples kinematically representative ofthe thin and thick disks have been selected, taking into account theHercules stream which is intermediate in kinematics, but with a probabledynamical origin. Our results show that the two disks are chemicallywell separated, they overlap greatly in metallicity and both showparallel decreasing alpha elements with increasing metallicity, in theinterval -0.80 < [Fe/H] < -0.30. The Mg enhancement with respectto Fe of the thick disk is measured to be 0.14 dex. An even largerenhancement is observed for Al. The thick disk is clearly older than thethin disk with tentative evidence of an AMR over 2-3 Gyr and a hiatus instar formation before the formation of the thin disk. We do not observea vertical gradient in the metallicity of the thick disk. The Herculesstream has properties similar to that of the thin disk, with a widerrange of metallicity. Metal-rich stars assigned to the thick disk andsuper-metal-rich stars assigned to the thin disk appear as outliers inall their properties.

Abundance correlations in mildly metal-poor stars. II. Light elements (C to Ca)
Accurate relative abundances have been obtained for carbon, oxygen,sodium, aluminium, silicon, and calcium in a sample of mildly metal-poorstars. This analysis complements a previous study carried out by Jehinet al. ([CITE], A&A, 341, 241), which provided the basis for theEASE scenario. This scenario postulates that field metal-poor stars wereborn in self-enriched proto-globular cluster clouds. By furtherinvestigating the correlations between the different α-elementabundances, we propose a modified scenario for the formation ofintermediate metallicity stars, in which the stars exhibiting lower thanaverage α/Fe abundance ratios would form in low mass clouds,unable to sustain the formation of very massive stars (M 30~M_ȯ). Moreover, the carbon-to-iron ratio is found to decrease asone climbs the so-called Population IIb branch, i.e. when the s-elementabundance increases. In the framework of the EASE scenario, we interpretthis anticorrelation between the carbon and the s-element abundances asa signature of a hot bottom burning process in the metal-poor AGB starswhich expelled the matter subsequently accreted by our Population IIbstars.Based on observations collected at the European Southern Observatory, LaSilla, Chile (ESO Programmes 56.E-0384, 57.E-0400 and 59.E-0257).

The [Zn/Fe] - [Fe/H] trend for disk and halo stars
Zn abundances, derived from a model atmosphere analysis of theλ6362.35 Å Zn I line, are presented for 44 thin disk, 10thick disk and 8 halo dwarf stars in the metallicity range -1.0 <[Fe/H] < +0.2. It is found that [Zn/Fe] in thin disk stars shows aslight increasing trend with decreasing metallicity reaching a value[Zn/Fe] ≃ +0.1 at [Fe/H] = -0.6. The thick disk stars in themetallicity range -0.9 < [Fe/H] < -0.6 have an average [Zn/Fe]≃ +0.15 dex, whereas five alpha-poor and Ni-poor halo stars in thesame metallicity range have [Zn/Fe] ≃ 0.0 dex. These resultsindicate that Zn is not an exact tracer of Fe as often assumed inabundance studies of damped Lyman-alpha systems (DLAs). A betterunderstanding of the nucleosynthesis of Zn is needed in order to obtainmore detailed information on the past history of star formation in DLAsfrom e.g. the observed sulphur/zinc ratio.Based on observations collected at the National AstronomicalObservatories, Xinglong, China and the European Southern Observatory, LaSilla, Chile (ESO No. 67.D-0106).

Stellar Chemical Signatures and Hierarchical Galaxy Formation
To compare the chemistries of stars in the Milky Way dwarf spheroidal(dSph) satellite galaxies with stars in the Galaxy, we have compiled alarge sample of Galactic stellar abundances from the literature. Whenkinematic information is available, we have assigned the stars tostandard Galactic components through Bayesian classification based onGaussian velocity ellipsoids. As found in previous studies, the[α/Fe] ratios of most stars in the dSph galaxies are generallylower than similar metallicity Galactic stars in this extended sample.Our kinematically selected stars confirm this for the Galactic halo,thin-disk, and thick-disk components. There is marginal overlap in thelow [α/Fe] ratios between dSph stars and Galactic halo stars onextreme retrograde orbits (V<-420 km s-1), but this is notsupported by other element ratios. Other element ratios compared in thispaper include r- and s-process abundances, where we find a significantoffset in the [Y/Fe] ratios, which results in a large overabundance in[Ba/Y] in most dSph stars compared with Galactic stars. Thus, thechemical signatures of most of the dSph stars are distinct from thestars in each of the kinematic components of the Galaxy. This resultrules out continuous merging of low-mass galaxies similar to these dSphsatellites during the formation of the Galaxy. However, we do not ruleout very early merging of low-mass dwarf galaxies, since up to one-halfof the most metal-poor stars ([Fe/H]<=-1.8) have chemistries that arein fair agreement with Galactic halo stars. We also do not rule outmerging with higher mass galaxies, although we note that the LMC and theremnants of the Sgr dwarf galaxy are also chemically distinct from themajority of the Galactic halo stars. Formation of the Galaxy's thickdisk by heating of an old thin disk during a merger is also not ruledout; however, the Galaxy's thick disk itself cannot be comprised of theremnants from a low-mass (dSph) dwarf galaxy, nor of a high-mass dwarfgalaxy like the LMC or Sgr, because of differences in chemistry.The new and independent environments offered by the dSph galaxies alsoallow us to examine fundamental assumptions related to thenucleosynthesis of the elements. The metal-poor stars ([Fe/H]<=-1.8)in the dSph galaxies appear to have lower [Ca/Fe] and [Ti/Fe] than[Mg/Fe] ratios, unlike similar metallicity stars in the Galaxy.Predictions from the α-process (α-rich freeze-out) would beconsistent with this result if there have been a lack of hypernovae indSph galaxies. The α-process could also be responsible for thevery low Y abundances in the metal-poor stars in dSph's; since [La/Eu](and possibly [Ba/Eu]) are consistent with pure r-process results, thelow [Y/Eu] suggests a separate r-process site for this light(first-peak) r-process element. We also discuss SNe II rates and yieldsas other alternatives, however. In stars with higher metallicities([Fe/H]>=-1.8), contributions from the s-process are expected; [(Y,La, and Ba)/Eu] all rise as expected, and yet [Ba/Y] is still muchhigher in the dSph stars than similar metallicity Galactic stars. Thisresult is consistent with s-process contributions from lower metallicityAGB stars in dSph galaxies, and is in good agreement with the slowerchemical evolution expected in the low-mass dSph galaxies relative tothe Galaxy, such that the build-up of metals occurs over much longertimescales. Future investigations of nucleosynthetic constraints (aswell as galaxy formation and evolution) will require an examination ofmany stars within individual dwarf galaxies.Finally, the Na-Ni trend reported in 1997 by Nissen & Schuster isconfirmed in Galactic halo stars, but we discuss this in terms of thegeneral nucleosynthesis of neutron-rich elements. We do not confirm thatthe Na-Ni trend is related to the accretion of dSph galaxies in theGalactic halo.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Abundances for metal-poor stars with accurate parallaxes. I. Basic data
We present element-to-element abundance ratios measured from highdispersion spectra for 150 field subdwarfs and early subgiants withaccurate Hipparcos parallaxes (errors <20%). For 50 stars new spectrawere obtained with the UVES on Kueyen (VLT UT2), the McDonald 2.7 mtelescope, and SARG at TNG. Additionally, literature equivalent widthswere taken from the works by Nissen & Schuster, Fulbright, andProchaska et al. to complement our data. The whole sample includes boththick disk and halo stars (and a few thin disk stars); most stars havemetallicities in the range -2<[Fe/H]<-0.6. We found our data, thatof Nissen & Schuster, and that of Prochaska to be of comparablequality; results from Fulbright scatter a bit more, but they are stillof very good quality and are extremely useful due to the large size ofhis sample. The results of the present analysis will be used inforthcoming papers to discuss the chemical properties of thedissipational collapse and accretion components of our Galaxy.Based in part on data collected at the European Southern Observatory,Chile, at the MacDonald Observatory, Texas, USA, and at the TelescopioNazionale Galileo, Canary Island, INAF,Italy-Spain.}\fnmsep\thanks{Table 1 is only available in electronic format the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) orvia\resizebox{8.8cm}{2.2mm}htpp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/404/187}

Oxygen line formation in late-F through early-K disk/halo stars. Infrared O I triplet and [O I] lines
In order to investigate the formation of O I 7771-5 and [O I] 6300/6363lines, extensive non-LTE calculations for neutral atomic oxygen werecarried out for wide ranges of model atmosphere parameters, which areapplicable to early-K through late-F halo/disk stars of variousevolutionary stages.The formation of the triplet O I lines was found to be well described bythe classical two-level-atom scattering model, and the non-LTEcorrection is practically determined by the parameters of theline-transition itself without any significant relevance to the detailsof the oxygen atomic model. This simplifies the problem in the sensethat the non-LTE abundance correction is essentially determined only bythe line-strength (Wlambda ), if the atmospheric parametersof Teff, log g, and xi are given, without any explicitdependence of the metallicity; thus allowing a useful analytical formulawith tabulated numerical coefficients. On the other hand, ourcalculations lead to the robust conclusion that LTE is totally valid forthe forbidden [O I] lines.An extensive reanalysis of published equivalent-width data of O I 7771-5and [O I] 6300/6363 taken from various literature resulted in theconclusion that, while a reasonable consistency of O I and [O I]abundances was observed for disk stars (-1 <~ [Fe/H] <~ 0), theexistence of a systematic abundance discrepancy was confirmed between OI and [O I] lines in conspicuously metal-poor halo stars (-3 <~[Fe/H] <~ -1) without being removed by our non-LTE corrections, i.e.,the former being larger by ~ 0.3 dex at -3 <~ [Fe/H] <~ -2.An inspection of the parameter-dependence of this discordance indicatesthat the extent of the discrepancy tends to be comparatively lessenedfor higher Teff/log g stars, suggesting the preference ofdwarf (or subgiant) stars for studying the oxygen abundances ofmetal-poor stars.Tables 2, 5, and 7 are only available in electronic form, at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/402/343 and Table\ref{tab3} is only available in electronic form athttp://www.edpsciences.org

Statistical cataloging of archival data for luminosity class IV-V stars. II. The epoch 2001 [Fe/H] catalog
This paper describes the derivation of an updated statistical catalog ofmetallicities. The stars for which those metallicities apply are ofspectral types F, G, and K, and are on or near the main sequence. Theinput data for the catalog are values of [Fe/H] published before 2002February and derived from lines of weak and moderate strength. Theanalyses used to derive the data have been based on one-dimensional LTEmodel atmospheres. Initial adjustments which are applied to the datainclude corrections to a uniform temperature scale which is given in acompanion paper (see Taylor \cite{t02}). After correction, the data aresubjected to a statistical analysis. For each of 941 stars considered,the results of that analysis include a mean value of [Fe/H], an rmserror, an associated number of degrees of freedom, and one or moreidentification numbers for source papers. The catalog of these resultssupersedes an earlier version given by Taylor (\cite{t94b}).Catalog is only available in electronic form at the CDS via anonymousftp cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/731

Statistical cataloging of archival data for luminosity class IV-V stars. I. The epoch 2001 temperature catalog
This paper is one of a pair in which temperatures and metallicitycatalogs for class IV-V stars are considered. The temperature catalogdescribed here is derived from a calibration based on stellar angulardiameters. If published calibrations of this kind are compared by usingcolor-index transformations, temperature-dependent differences among thecalibrations are commonly found. However, such differences are minimizedif attention is restricted to calibrations based on Johnson V-K. Acalibration of this sort from Di Benedetto (\cite{dib98}) is thereforetested and adopted. That calibration is then applied to spectroscopicand photometric data, with the latter predominating. Cousins R-Iphotometry receives special attention because of its high precision andlow metallicity sensitivity. Testing of temperatures derived from thecalibration suggests that their accuracy and precision are satisfactory,though further testing will be warranted as new results appear. Thesetemperatures appear in the catalog as values of theta equiv5040/T(effective). Most of these entries are accompanied by measured orderived values of Cousins R-I. Entries are given for 951 stars.Catalog is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/721

Revised Coordinates and Proper Motions of the Stars in the Luyten Half-Second Catalog
We present refined coordinates and proper-motion data for the highproper-motion (HPM) stars in the Luyten Half-Second (LHS) catalog. Thepositional uncertainty in the original Luyten catalog is typicallygreater than 10" and is often greater than 30". We have used the digitalscans of the POSS I and POSS II plates to derive more accurate positionsand proper motions of the objects. Out of the 4470 candidates in the LHScatalog, 4323 objects were manually reidentified in the POSS I and POSSII scans. A small fraction of the stars were not found because of thelack of finder charts and digitized POSS II scans. The uncertainties inthe revised positions are typically ~2" but can be as high as ~8" in afew cases, which is a large improvement over the original data.Cross-correlation with the Tycho-2 and Hipparcos catalogs yielded 819candidates (with mR<~12). For these brighter sources, theposition and proper-motion data were replaced with the more accurateTycho-2/Hipparcos data. In total, we have revised proper-motionmeasurements and coordinates for 4040 stars and revised coordinates for4330 stars. The electronic version of the paper5 contains the updated information on all 4470stars in the LHS catalog.

Europium abundances in F and G disk dwarfs
Europium abundances for 74 F and G dwarf stars of the galactic disk havebeen determined from the 4129.7 Å Eu II line. The stars wereselected from the sample of Edvardsson et al. (1993) and [Eu/Fe] shows asmaller scatter and a slightly weaker trend with [Fe/H] than found byWoolf et al. (1995). The data of the two analyses are homogenized andmerged. We also discuss the adopted effective temperature scale. Basedon observations carried out at the European Southern Observatory, LaSilla, Chile. Tables 2 and 6 are only available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcal?J/A+A/381/500

Catalogue of [Fe/H] determinations for FGK stars: 2001 edition
The catalogue presented here is a compilation of published atmosphericparameters (Teff, log g, [Fe/H]) obtained from highresolution, high signal-to-noise spectroscopic observations. This newedition has changed compared to the five previous versions. It is nowrestricted to intermediate and low mass stars (F, G and K stars). Itcontains 6354 determinations of (Teff, log g, [Fe/H]) for3356 stars, including 909 stars in 79 stellar systems. The literature iscomplete between January 1980 and December 2000 and includes 378references. The catalogue is made up of two tables, one for field starsand one for stars in galactic associations, open and globular clustersand external galaxies. The catalogue is distributed through the CDSdatabase. Access to the catalogue with cross-identification to othersets of data is also possible with VizieR (Ochsenbein et al.\cite{och00}). The catalogue (Tables 1 and 2) is only available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/373/159 and VizieRhttp://vizier.u-strasbg.fr/.

Lithium abundances for 185 main-sequence stars: Galactic evolution and stellar depletion of lithium
We present a survey of lithium abundances in 185 main-sequence fieldstars with 5600 <~ Teff <~ 6600 K and -1.4 <~ [Fe/H]<~ +0.2 based on new measurements of the equivalent width of thelambda 6708 Li I line in high-resolution spectra of 130 stars and areanalysis of data for 55 stars from Lambert et al. (\cite{Lambert91}).The survey takes advantage of improved photometric and spectroscopicdeterminations of effective temperature and metallicity as well as massand age derived from Hipparcos absolute magnitudes, offering anopportunity to investigate the behaviour of Li as a function of theseparameters. An interesting result from this study is the presence of alarge gap in the log varepsilon (Li) - Teff plane, whichdistinguishes ``Li-dip'' stars like those first identified in the Hyadescluster by Boesgaard & Tripicco (\cite{Boesgaard86}) from otherstars with a much higher Li abundance. The Li-dip stars concentrate on acertain mass, which decreases with metallicity from about 1.4Msun at solar metallicity to 1.1 Msun at [Fe/H] =~-1.0. Excluding the Li-dip stars and a small group of lower mass starswith Teff < 5900 K and log varepsilon (Li) < 1.5, theremaining stars, when divided into four metallicity groups, may show acorrelation between Li abundance and stellar mass. The dispersion aroundthe log varepsilon (Li)-mass relation is about 0.2 dex below [Fe/H] =~-0.4 and 0.3 dex above this metallicity, which cannot be explained byobservational errors or differences in metallicity. Furthermore, thereis no correlation between the residuals of the log varepsilon (Li)-massrelations and stellar age, which ranges from 1.5 Gyr to about 15 Gyr.This suggests that Li depletion occurs early in stellar life and thatparameters other than stellar mass and metallicity affect the degree ofdepletion, e.g. initial rotation velocity and/or the rate of angularmomentum loss. It cannot be excluded, however, that a cosmic scatter ofthe Li abundance in the Galaxy at a given metallicity contributes to thedispersion in Li abundance. These problems make it difficult todetermine the Galactic evolution of Li from the data, but a comparisonof the upper envelope of the distribution of stars in the log varepsilon(Li) - [Fe/H] plane with recent Galactic evolutionary models by Romanoet al. (\cite{Romano99}) suggests that novae are a major source for theLi production in the Galactic disk; their occurrence seems to be theexplanation for the steep increase of Li abundance at [Fe/H] =~ -0.4.Based on observations carried out at Beijing Astronomical Observatory(Xinglong, PR China) and European Southern Observatory, La Silla, Chile.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/371/943 and athttp://www.edpsciences.org

Revised Magnesium Abundances in Galactic Halo and Disk Stars
A differential analysis of the magnesium abundances in 61 F-K dwarfs andsubgiants with metallicities -2.6<[Fe/H]<+0.2 is performed basedon published observational data. Fundamental parameters for 36 stars aredetermined: T eff from V-K and V-R; logg from HIPPARCOS parallaxes, and[Fe/H] and ξt from Fe II lines. The computations allow for non-LTEeffects in the formation of the Mg I lines. For most of the stars, thestandard errors in the Mg abundances do not exceed 0.07 dex. Themetallicity dependence of [Mg/Fe] is analyzed. Magnesium shows aconstant overabundance relative to Fe of 0.46±0.06 dex formetallicities -2.6<[Fe/H]<-0.7 Mg. The Mg overabundance decreasesabruptly to ˜+0.27 dex at [Fe/H]⋍-0.7. At highermetallicities, the Mg abundance smoothly decreases to the solar value at[Fe/H]=0.0. Halo stars with metallicities [Fe/H]<-1.0 exhibit lowerMg overabundances ( ) compared to the [Mg/Fe] values for other starswith similar [Fe/H].

The abundance distribution of elements captured by neutrons in metal-poor stars
Based on our model to compute the heavy element abundances in metal-poorstars, the authors study the heavy-element abundance distributions in 21metal-poor stars published in 1999. The results show that the heavierelements agree well with the observed data, but the lighter elementsdeviate from them, and this further shows that the heavier elementabundances from different nucleosynthesis processes in metal-poorsurroundings are similar to those from corresponding processes in thesolar system but the contribution ratios are different, and the lighterelement abundances deviate from that of the solar system. At the sametime the results suggest the nucleosynthesis sites of the lighter andheavier elements are different, namely they have differentnucleosynthesis mechanisms. In this paper, the authors especiallydiscuss the influence of the observed abundance errors on the componentcoefficients of different nucleosynthesis processes.

Non-LTE Abundances and Consequences for the Evolution of the α-Elements in the Galaxy
Abundances of α-elements such as Ca and Mg in disk and halo starsare usually derived from equivalent width lines measured onhigh-resolution spectra and assuming local thermodynamic equilibrium(LTE). In this paper, we present non-LTE differential abundances derivedby computing the statistical equilibrium of Ca I and Mg I atoms, usinghigh-resolution equivalent widths available in the literature for 252dwarf to subgiant stars. These non-LTE abundances, combined with recentdetermination of non-LTE abundances of iron, seem to remove thedispersion of the [Ca/Fe] and [Mg/Fe] ratios in the galactic halo anddisk phases, revealing new and surprising structures. These results haveimportant consequences for chemical evolution models of the Galaxy. Inaddition, non-LTE abundance ratios for stars belonging to the M92cluster apparently have the same behavior. More high-resolutionobservations, mainly of globular clusters, are urgently needed toconfirm our results.

Distances, Ages, and Epoch of Formation of Globular Clusters
We review the results on distances and absolute ages of Galacticglobular clusters (GCs) obtained after the release of the Hipparcoscatalog. Several methods aimed at the definition of the Population IIlocal distance scale are discussed, and their results compared,exploiting new results for RR Lyraes in the Large Magellanic Cloud(LMC). We find that the so-called short distance and long distancescales may be reconciled whether or not a consistent reddening scale isadopted for Cepheids and RR Lyrae variables in the LMC. Emphasis isgiven in the paper to the discussion of distances and ages of GCsderived using Hipparcos parallaxes of local subdwarfs. We find that theselection criteria adopted to choose the local subdwarfs, as well as thesize of the corrections applied to existing systematic biases, are themain culprit for the differences found among the various independentstudies that first used Hipparcos parallaxes and the subdwarf fittingtechnique. We also caution that the absolute age of M92 (usuallyconsidered one of the oldest clusters) still remains uncertain due tothe lack of subdwarfs of comparable metallicity with accurateparallaxes. Distances and ages for the nine clusters discussed in aprevious paper by Gratton et al. are rederived using an enlarged sampleof local subdwarfs, which includes about 90% of the metal-poor dwarfswith accurate parallaxes (Δπ/π<=0.12) in the wholeHipparcos catalog. On average, our revised distance moduli are decreasedby 0.04 mag with respect to Gratton et al. The corresponding age of theGCs is t=11.5+/-2.6 Gyr, where the error bars refer to the 95%confidence range. The relation between the zero-age horizontal branch(ZAHB) absolute magnitude and metallicity for the nine program clustersturns out to beMV(ZAHB)=(0.18+/-0.09)([Fe/H]+1.5)+(0.53+/-0.12) Thanks toHipparcos the major contribution to the total error budget associatedwith the subdwarf fitting technique has been moved from parallaxes tophotometric calibrations, reddening, and metallicity scale. This totaluncertainty still amounts to about +/-0.12 mag. We then compare thecorresponding (true) LMC distance modulusμLMC=18.64+/-0.12 mag with other existing determinations.We conclude that at present the best estimate for the distance of theLMC is μLMC=18.54+/-0.03+/-0.06, suggesting that distancesfrom the subdwarf fitting method are ~1 σ too long. Consequently,our best estimate for the age of the GCs is revised to Age=12.9+/-2.9Gyr (95% confidence range). The best relation between ZAHB absolutemagnitude and metallicity isMV(ZAHB)=(0.18+/-0.09)([Fe/H]+1.5)+(0.63+/-0.07). Finally, wecompare the ages of the GCs with the cosmic star formation rate recentlydetermined by studies of the Hubble Deep Field (HDF), exploiting thedeterminations of ΩM=0.3 andΩΛ=0.7 provided by Type Ia supernovae surveys.We find that the epoch of formation of the GCs (at z~3) matches well themaximum of the star formation rate for elliptical galaxies in the HDF asdetermined by Franceschini et al. Based on data from the Hipparcosastrometry satellite.

Abundances of light elements in metal-poor stars. III. Data analysis and results
We present the results of the analysis of an extensive set of new andliterature high quality data concerning Fe, C, N, O, Na, and Mg. Thisanalysis exploited the T_eff scale determined in Gratton et al. (1996a),and the non-LTE abundance corrections computed in Gratton et al.(1999a). Results obtained with various abundance indices are discussedand compared. Detailed comparison with models of galactic chemicalevolution will be presented in future papers of this series. Our non-LTEanalysis yields the same O abundances from both permitted and forbiddenlines for stars with T_eff >4600 K, in agreement with King (1993),but not with other studies using a lower T_eff -scale for subdwarfs.However, we obtain slightly smaller O abundances for the most luminousmetal-poor field stars than for fainter stars of similar metallicities,an effect attributed to inadequacies of the adopted model atmospheres(Kurucz 1992, with overshooting) for cool stars. We find a nearlyconstant O overundance in metal-poor stars ([Fe/H]<-0.8), at a meanvalue of 0.46+/- 0.02 dex (sigma =0.12, 32 stars), with only a gentleslope with [Fe/H] ( ~ -0.1); this result is different from the steeperslope recently obtained using OH band in the near UV. If only bonafideunmixed stars are considered, C abundances scale with Fe ones (i.e.[C/Fe]~ 0) down to [Fe/H] ~ -2.5. Due to our adoption of a differentT_eff scale, we do not confirm the slight C excess in the most metalpoor disk dwarfs (-0.8<[Fe/H]<-0.4) found in previousinvestigations. Na abundances scale as Fe ones in the high metallicityregime, while metal-poor stars present a Na underabundance. None of thefield stars analyzed belong to the group of O-poor and Na-rich starsobserved in globular clusters. Na is deficient with respect to Mg inhalo and thick disk stars; within these populations, Na deficiency maybe a slow function of [Mg/H]. Solar [Na/Mg] ratios are obtained for thindisk stars. Tables~ 2 to 9 are only available in electronic form at theCDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strabg.fr/Abstract.html

Sottometti un nuovo articolo


Link relazionati

  • - Nessun link trovato -
Sottometti un nuovo link


Membro dei seguenti gruppi:


Osservazione e dati astrometrici

Costellazione:Reticolo
Ascensione retta:04h01m44.64s
Declinazione:-57°12'24.6"
Magnitudine apparente:8.15
Distanza:52.576 parsec
Moto proprio RA:351.9
Moto proprio Dec:411.4
B-T magnitude:8.776
V-T magnitude:8.202

Cataloghi e designazioni:
Nomi esatti
HD 1989HD 25704
TYCHO-2 2000TYC 8504-500-1
USNO-A2.0USNO-A2 0300-01201534
HIPHIP 18802

→ Richiesta di ulteriori cataloghi da VizieR