Home     Per cominciare     Nuove immagini     Immagine del giorno     Blog New!     Login  

TYC 6999-109-1


Contenuti

Immagini

Carica la tua immagine

DSS Images   Other Images


Articoli relazionati

An Overview of the Rotational Behavior of Metal-poor Stars
This paper describes the behavior of the rotational velocity inmetal-poor stars ([Fe/H] <= -0.5 dex) in different evolutionarystages, based on vsin i values from the literature. Our sample iscomprised of stars in the field and some Galactic globular clusters,including stars on the main sequence, the red giant branch (RGB), andthe horizontal branch (HB). The metal-poor stars are, mainly, slowrotators, and their vsin i distribution along the HR diagram is quitehomogeneous. Nevertheless, a few moderate to high values of vsin i arefound in stars located on the main sequence and the HB. We show that theoverall distribution of vsin i values is basically independent ofmetallicity for the stars in our sample. In particular, thefast-rotating main sequence stars in our sample present rotation ratessimilar to their metal-rich counterparts, suggesting that some of themmay actually be fairly young, in spite of their low metallicity, or elsethat at least some of them would be better classified as blue stragglerstars. We do not find significant evidence of evolution in vsin i valuesas a function of position on the RGB; in particular, we do not confirmprevious suggestions that stars close to the RGB tip rotate faster thantheir less-evolved counterparts. While the presence of fast rotatorsamong moderately cool blue HB stars has been suggested to be due toangular momentum transport from a stellar core that has retainedsignificant angular momentum during its prior evolution, we find thatany such transport mechanisms most likely operate very fast as the stararrives on the zero-age HB (ZAHB), since we do not find a link betweenevolution off the ZAHB and vsin i values. We present an extensivetabulation of all quantities discussed in this paper, including rotationvelocities, temperatures, gravities, and metallicities [Fe/H], as wellas broadband magnitudes and colors.

Halo Star Streams in the Solar Neighborhood
We have assembled a sample of halo stars in the solar neighborhood tolook for halo substructure in velocity and angular momentum space. Oursample (231 stars) includes red giants, RR Lyrae variable stars, and redhorizontal branch stars within 2.5 kpc of the Sun with [Fe/H] less than-1.0. It was chosen to include stars with accurate distances, spacevelocities, and metallicities, as well as well-quantified errors. Withour data set, we confirm the existence of the streams found by Helmi andcoworkers, which we refer to as the H99 streams. These streams have adouble-peaked velocity distribution in the z-direction (out of theGalactic plane). We use the results of modeling of the H99 streams byHelmi and collaborators to test how one might use vz velocityinformation and radial velocity information to detect kinematicsubstructure in the halo. We find that detecting the H99 streams withradial velocities alone would require a large sample (e.g.,approximately 150 stars within 2 kpc of the Sun and within 20° ofthe Galactic poles). In addition, we use the velocity distribution ofthe H99 streams to estimate their age. From our model of the progenitorof the H99 streams, we determine that it was accreted between 6 and 9Gyr ago. The H99 streams have [α/Fe] abundances similar to otherhalo stars in the solar neighborhood, suggesting that the gas thatformed these stars were enriched mostly by Type II supernovae. We havealso discovered in angular momentum space two other possiblesubstructures, which we refer to as the retrograde and progradeoutliers. The retrograde outliers are likely to be halo substructure,but the prograde outliers are most likely part of the smooth halo. Theretrograde outliers have significant structure in the vφdirection and show a range of [α/Fe], with two having low[α/Fe] for their [Fe/H]. The fraction of substructure stars in oursample is between 5% and 7%. The methods presented in this paper can beused to exploit the kinematic information present in future largedatabases like RAVE, SDSS-II/SEGUE, and Gaia.

Bright Metal-poor Stars from the Hamburg/ESO Survey. I. Selection and Follow-up Observations from 329 Fields
We present a sample of 1777 bright (91.0) metal-poor([Fe/H]<-2.0) giants of 9%+/-2%, which is lower than previouslyreported. However, the frequency rises to similar (>20%) and highervalues with increasing distance from the Galactic plane. Although thenumbers of stars at low metallicity are falling rapidly at the lowestmetallicities, there is evidence that the fraction of carbon-enhancedmetal-poor stars is increasing rapidly as a function of decliningmetallicity. For ~60 objects, high-resolution data have already beenobtained; one of these, HE 1327-2326, is the new record holder for themost iron-deficient star known.

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

Oxygen abundances in metal-poor subgiants as determined from [O I], O I and OH lines
The debate on the oxygen abundances of metal-poor stars has its originin contradictory results obtained using different abundance indicators.To achieve a better understanding of the problem we have acquired highquality spectra with the Ultraviolet and Visual Echelle Spectrograph atVLT, with a signal-to-noise of the order of 100 in the near ultravioletand 500 in the optical and near infrared wavelength range. Threedifferent oxygen abundance indicators, OH ultraviolet lines around 310.0nm, the [O i] line at 630.03 nm and the O i lines at 777.1-5 nm wereobserved in the spectra of 13 metal-poor subgiants with-3.0≤[Fe/H]≤-1.5. Oxygen abundances were obtained from theanalysis of these indicators which was carried out assuming localthermodynamic equilibrium and plane-parallel model atmospheres.Abundances derived from O i were corrected for departures from localthermodynamic equilibrium. Stellar parameters were computed usingT_eff-vs.-color calibrations based on the infrared flux method andBalmer line profiles, Hipparcos parallaxes and Fe II lines. [O/Fe]values derived from the forbidden line at 630.03 nm are consistent withan oxygen/iron ratio that varies linearly with [Fe/H] as[O/Fe]=-0.09(±0.08)[Fe/H]+0.36(±0.15). Values based on theO i triplet are on average 0.19±0.22 dex(s.d.) higher than thevalues based on the forbidden line while the agreement between OHultraviolet lines and the forbidden line is much better with a meandifference of the order of -0.09±0.25 dex(s.d.). In general, ourresults follow the same trend as previously published results with theexception of the ones based on OH ultraviolet lines. In that case ourresults lie below the values which gave rise to the oxygen abundancedebate for metal-poor stars.

Li and Be depletion in metal-poor subgiants
A sample of metal-poor subgiants has been observed with the UVESspectrograph at the Very Large Telescope and abundances of Li and Behave been determined. Typical signal-to-noise per spectral bin valuesfor the co-added spectra are of the order of 500 for the ion{Li}{i} line(670.78 nm) and 100 for the ion{Be}{ii} doublet lines (313.04 nm). Thespectral analysis of the observations was carried out using the Uppsalasuite of codes and marcs (1D-LTE) model atmospheres with stellarparameters from photometry, parallaxes, isochrones and Fe ii lines.Abundance estimates of the light elements were corrected for departuresfrom local thermodynamic equilibrium in the line formation. Effectivetemperatures and Li abundances seem to be correlated and Be abundancescorrelate with [O/H]. Standard models predict Li and Be abundancesapproximately one order of magnitude lower than main-sequence valueswhich is in general agreement with the observations. On average, ourobserved depletions seem to be 0.1 dex smaller and between 0.2 and 0.4dex larger (depending on which reference is taken) than those predictedfor Li and Be, respectively. This is not surprising since the initial Liabundance, as derived from main-sequence stars on the Spite plateau, maybe systematically in error by 0.1 dex or more, and uncertainties in thespectrum normalisation and continuum drawing may affect our Beabundances systematically.

Spectroscopic Binaries, Velocity Jitter, and Rotation in Field Metal-poor Red Giant and Red Horizontal-Branch Stars
We summarize 2007 radial velocity measurements of 91 metal-poor fieldred giants. Excluding binary systems with orbital solutions, ourcoverage averages 13.7 yr per star, with a maximum of 18.0 yr. We reportfour significant findings. (1) Sixteen stars are found to bespectroscopic binaries, and we present orbital solutions for 14 of them.The spectroscopic binary frequency of the metal-poor red giants, with[Fe/H]<=-1.4, for periods less than 6000 days, is 16%+/-4%, which isnot significantly different from that of comparable-metallicity fielddwarfs, 17%+/-2%. The two CH stars in our program, BD -1°2582 and HD135148, are both spectroscopic binaries. (2) Velocity jitter is presentamong about 40% of the giants with MV<=-1.4. The twobest-observed cases, HD 3008 and BD +22°2411, showpseudoperiodicities of 172 and 186 days, longer than any knownlong-period variable in metal-poor globular clusters. Photometricvariability seen in HD 3008 and three other stars showing velocityjitter hints that starspots are the cause. However, the phasing of thevelocity data with the photometry data from Hipparcos is not consistentwith a simple starspot model for HD 3008. We argue against orbitalmotion effects and radial pulsation, so rotational modulation remainsthe best explanation. The implied rotational velocities for HD 3008 andBD +22°2411, both with MV<=-1.4 and R~50Rsolar, exceed 12 km s-1. (3) Including HD 3008and BD +22°2411, we have found signs of significant excess linebroadening in eight of the 17 red giants with MV<=-1.4,which we interpret as rotation. In three cases, BD +30°2034, CD-37°14010, and HD 218732, the rotation is probably induced by tidallocking between axial rotation and the observed orbital motion with astellar companion. But this cannot explain the other five stars in oursample that display signs of significant rotation. This high frequencyof elevated rotational velocities does not appear to be caused bystellar mass transfer or mergers: there are too few main-sequencebinaries with short enough periods. We also note that the lack of anynoticeable increase in mean rotation at the magnitude level of the redgiant branch luminosity function ``bump'' argues against the rapidrotation's being caused by the transport of internal angular momentum tothe surface. Capture of a planetary-mass companion as a red giantexpands in radius could explain the high rotational velocities. (4) Wealso find significant rotation in at least six of the roughly 15 (40%)red horizontal-branch stars in our survey. It is likely that theenhanced rotation seen among a significant fraction of both blue and redhorizontal-branch stars arose when these stars were luminous red giants.Rapid rotation alone therefore appears insufficient cause to populatethe blue side of the horizontal branch. While the largest projectedrotational velocities seen among field blue and red horizontal-branchstars are consistent with their different sizes, neither are consistentwith the large values we find for the largest red giants. This suggeststhat some form of angular momentum loss (and possibly mass loss) hasbeen at work. Also puzzling is the apparent absence of rotation seen infield RR Lyrae variables. Angular momentum transfer and conservation inevolved metal-poor field stars thus pose many interesting questions forthe evolution of low-mass stars.

Catalogue of [Fe/H] determinations for FGK stars: 2001 edition
The catalogue presented here is a compilation of published atmosphericparameters (Teff, log g, [Fe/H]) obtained from highresolution, high signal-to-noise spectroscopic observations. This newedition has changed compared to the five previous versions. It is nowrestricted to intermediate and low mass stars (F, G and K stars). Itcontains 6354 determinations of (Teff, log g, [Fe/H]) for3356 stars, including 909 stars in 79 stellar systems. The literature iscomplete between January 1980 and December 2000 and includes 378references. The catalogue is made up of two tables, one for field starsand one for stars in galactic associations, open and globular clustersand external galaxies. The catalogue is distributed through the CDSdatabase. Access to the catalogue with cross-identification to othersets of data is also possible with VizieR (Ochsenbein et al.\cite{och00}). The catalogue (Tables 1 and 2) is only available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/373/159 and VizieRhttp://vizier.u-strasbg.fr/.

Passbands and Theoretical Colors for the Washington System
The passbands of the Washington system (C, M, T1,T2) have been checked through synthetic photometry of theVilnius spectra and comparison of observed and synthetic color-colorrelations. Using the derived passbands, theoretical colors were computedusing the grid of ATLAS no-overshoot models of Castelli. These can beused for calibration of the Washington system.

Kinematics of Metal-poor Stars in the Galaxy. II. Proper Motions for a Large Nonkinematically Selected Sample
We present a revised catalog of 2106 Galactic stars, selected withoutkinematic bias and with available radial velocities, distance estimates,and metal abundances in the range -4.0<=[Fe/H]<=0.0. This updateof the 1995 Beers & Sommer-Larsen catalog includes newly derivedhomogeneous photometric distance estimates, revised radial velocitiesfor a number of stars with recently obtained high-resolution spectra,and refined metallicities for stars originally identified in the HKobjective-prism survey (which account for nearly half of the catalog)based on a recent recalibration. A subset of 1258 stars in this cataloghave available proper motions based on measurements obtained with theHipparcos astrometry satellite or taken from the updated AstrographicCatalogue (second epoch positions from either the Hubble Space TelescopeGuide Star Catalog or the Tycho Catalogue), the Yale/San Juan SouthernProper Motion Catalog 2.0, and the Lick Northern Proper Motion Catalog.Our present catalog includes 388 RR Lyrae variables (182 of which arenewly added), 38 variables of other types, and 1680 nonvariables, withdistances in the range 0.1 to 40 kpc.

Estimation of Stellar Metal Abundance. II. A Recalibration of the Ca II K Technique, and the Autocorrelation Function Method
We have recalibrated a method for the estimation of stellar metalabundance, parameterized as [Fe/H], based on medium-resolution (1-2Å) optical spectra (the majority of which cover the wavelengthrange 3700-4500 Å). The equivalent width of the Ca II K line (3933Å) as a function of [Fe/H] and broadband B-V color, as predictedfrom spectrum synthesis and model atmosphere calculations, is comparedwith observations of 551 stars with high-resolution abundances availablefrom the literature (a sevenfold increase in the number of calibrationstars that were previously available). A second method, based on theFourier autocorrelation function technique first described by Ratnatunga& Freeman, is used to provide an independent estimate of [Fe/H], ascalibrated by comparison with 405 standard-star abundances.Metallicities based on a combination of the two techniques for dwarfsand giants in the color range 0.30<=(B-V)_0<=1.2 exhibit anexternal 1 sigma scatter of approximately 0.10-0.20 dex over theabundance range -4.0<=[Fe/H]<=0.5. Particular attention has beengiven to the determination of abundance estimates at the metal-rich endof the calibration, where our previous attempt suffered from aconsiderable zero-point offset. Radial velocities, accurate toapproximately 10 km s^-1, are reported for all 551 calibration stars.

Ca II H and K Photometry on the UVBY System. III. The Metallicity Calibration for the Red Giants
New photometry on the uvby Ca system is presented for over 300 stars.When combined with previous data, the sample is used to calibrate themetallicity dependence of the hk index for cooler, evolved stars. Themetallicity scale is based upon the standardized merger of spectroscopicabundances from 38 studies since 1983, providing an overlap of 122evolved stars with the photometric catalog. The hk index producesreliable abundances for stars in the [Fe/H] range from -0.8 to -3.4,losing sensitivity among cooler stars due to saturation effects athigher [Fe/H], as expected.

Early evolution of the Galactic halo revealed from Hipparcos observations of metal-poor stars
The kinematics of 122 red giant and 124 RR Lyrae stars in the solarneighborhood are studied using accurate measurements of their propermotions obtained by the Hipparcos astrometry satellite, combined withtheir published photometric distances, metal abundances, and radialvelocities. A majority of these sample stars have metal abundances of(Fe/H) = -1 or less and thus represent the old stellar populations inthe Galaxy. The halo component, with (Fe/H) = -1.6 or less, ischaracterized by a lack of systemic rotation and a radially elongatedvelocity ellipsoid. About 16 percent of such metal-poor stars have loworbital eccentricities, and we see no evidence of a correlation between(Fe/H) and e. Based on the model for the e-distribution of orbits, weshow that this fraction of low-e stars for (Fe/H) = -1.6 or less isexplained by the halo component alone, without introducing the extradisk component claimed by recent workers. This is also supported by theabsence of a significant change in the e-distribution with height fromthe Galactic plane. In the intermediate-metallicity range, we find thatstars with disklike kinematics have only modest effects on thedistributions of rotational velocities and e for the sample at absolutevalue of z less than 1 kpc. This disk component appears to constituteonly 10 percent for (Fe/H) between -1.6 and -1 and 20 percent for (Fe/H)between -1.4 and -1.

A catalogue of [Fe/H] determinations: 1996 edition
A fifth Edition of the Catalogue of [Fe/H] determinations is presentedherewith. It contains 5946 determinations for 3247 stars, including 751stars in 84 associations, clusters or galaxies. The literature iscomplete up to December 1995. The 700 bibliographical referencescorrespond to [Fe/H] determinations obtained from high resolutionspectroscopic observations and detailed analyses, most of them carriedout with the help of model-atmospheres. The Catalogue is made up ofthree formatted files: File 1: field stars, File 2: stars in galacticassociations and clusters, and stars in SMC, LMC, M33, File 3: numberedlist of bibliographical references The three files are only available inelectronic form at the Centre de Donnees Stellaires in Strasbourg, viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5), or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Ca II H and K Filter Photometry on the UVBY System. II. The Catalog of Observations
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995AJ....109.2828T&db_key=AST

Kinematics of metal-poor stars in the galaxy
We discuss the kinematic properties of a sample of 1936 Galactic stars,selected without kinematic bias, and with abundances (Fe/H) is less thanor equal to -0.6. The stars selected for this study all have measuredradial velocities, and the majority have abundances determined fromspectroscopic or narrow-/intermediate-band photometric techniques. Incontrast to previous examinations of the kinematics of the metal-poorstars in the Galaxy, our sample contains large numbers of stars that arelocated at distances in excess of 1 kpc from the Galactic plane. Thus, amuch clearer picture of the nature of the metal-deficient populations inthe Galaxy can now be drawn.

Reddening estimation for halo red giants using UVBY photometry
Updated uvby observations for a larger sample of metal-deficient redgiants are presented and combined with a select sample of data from theliterature transformed to a common system. Using the reddening maps ofBurstein & Heiles (1982), new absolute magnitudes, distances,metallicities, and reddenings are derived for each star. Themetallicities are determined with a revised calibration of them1, (b-y) diagram based upon comparison to a complilation ofrecent spectrsoscopic abundances transformed to a common system. Thephotometric abundances agree very well with the spectroscopic; thedispersion among the residuals for 58 giants is +/- 0.16 dex. Thedereddened indices are used to show that for red giants with (Fe/H) lessthan -1.5, there is a well-defined relation in the c0,(b-y)0 diagram which exhibits only a weak dependence uponmetallicity. Use of the standard relations allows one to obtainreddening estimates for normal halo field giants and globular clustersin the appropriate metallicity range.

A catalogue of Fe/H determinations - 1991 edition
A revised version of the catalog of Fe/H determinations published by G.Cayrel et al. (1985) is presented. The catalog contains 3252 Fe/Hdeterminations for 1676 stars. The literature is complete up to December1990. The catalog includes only Fe/H determinations obtained from highresolution spectroscopic observations based on detailed spectroscopicanalyses, most of them carried out with model atmospheres. The catalogcontains a good number of Fe/H determinations for stars from open andglobular clusters and for some supergiants in the Magellanic Clouds.

Oxygen abundances in halo stars
The present study determines the oxygen abundance for a sample ofmetal-poor G dwarfs by analysis of OH lines between 3080 and 3200 A andthe permitted high-excitation far-red O I triple. The oxygen abundancesdetermined from the low-excitation OH lines are up to 0.55 dex lowerthan those measured from the high-excitation O I lines. The abundancesfor the far-red O I triplet lines agree with those rederived from Abiaand Rebolo (1989), and the abundances from the OH lines in dwarfs andgiants are in agreement with the rederived O abundances of Barbuy (1988)and others from the forbidden resonance O I line. Because the chi =0.1.7 eV OH lines are formed in the same layers as the majority of Fe,Ti, and other neutral metal lines used for abundance analyses, it isargued that the OH lines and the forbidden O I line yield the trueoxygen abundances relative to the metals.

An improved metal abundance calibration for the Washington system
The determination of metal abundances for individual giants fromWashington photometry is revised, with several significant improvementsincorporated. The solar-abundance two-color relations are revamped withthe inclusion of new observations of a large sample of solar-abundancegiants with small reddenings, especially those with late-K spectraltypes. The new relations are very similar to the original ones derivedin C76 except for a zero-point offset. A new temperature index, M-T2, isinvestigated, as well as a new abundance index, C-T1, in addition to thestandard indices. The M-T2 index has a much broader baseline and thus amuch larger range than T1-T2, and is therefore less susceptible tophotometric errors. The significant decrease in abundance sensitivityfor cooler stars, suspected by previous investigations, is confirmed byincluding observations of a number of giants with a range in temperaturein each of a large sample of open and globular clusters. A procedure forcorrecting the abundance indices for cool stars is derived whichsignificantly improves the metallicity determination.

Chemical Compositions of Population II - and Late-Type Stars
Contents: 1. Why determine chemical abundances in Population II stars?2. Abundance patterns in metal-deficient field red giants. 3. PeculiarCNO, S, and s-process abundances in post-AGB stars.

The empirical abundance calibrations for Washington photometry of Population II giants
Based on a large sample of stars with accurate spectroscopic abundancedeterminations, a reexamination of the abundance calibrations of theWashington system for late-type giants with Fe/H abundance ratios ofless than -0.5 is presented. The Fe abundance sensitivity of theDelta(M-T1) index is found to be limited for stars more metal-poor thanFe/H abundances of about -1, while the Delta (C-M) index is shown to besensitive to Fe abundances throughout the entire range of known stellarabundances. Observations of a number of giants in the 47 Tuc and M 4globular clusters demonstrate that the system can differentiateCN-strong or CH-strong giants from normal giants most effectively forgiants more metal-rich than 0.1 solar, and the Delta(C-M) index is foundto be much more sensitive to Fe abundance than CN or CH strength. AnFe/H abundance value of -0.85 + or - 0.1 for 47 Tuc is derived which isin good agreement with previous results and which contradicts thesuggestion of a significantly lower Fe abundance.

Population studies. II - Kinematics as a function of abundance and galactocentric position for (Fe/H) of -0.6 or less
A catalog is presented of some 1200 Galactic objects which have radialvelocities and (Fe/H) abundances of -0.6 or less. These data areanalyzed to yield information on the kinematic properties of the olderpopulations of the Galaxy and on the interdependence between kinematicsand abundance. It is found that the kinematics of the availablekinematically selected stars differ from those of the nonkinematicallyselected objects. No evidence is found for any significant difference inthe kinematic properties of the various halo subgroups, nor for anydependence of kinematics on abundance. While the rotation of the halo issmall at about 37 km/s for (Fe/H) of -1.2 or less, it rises quickly forhigher abundances to a value of about 160 km/s at (Fe/H) = 0.6. Objectsin the abundance range -0.9 to -0.6 appear to belong predominantly to apopulation possessing the kinematic characteristics of a thick disk. Theimplications of these findings for the suggestion that globular clustersbelong to the same population as the noncluster objects, for the originof the thick disk, and for the mass of the Galaxy are discussed.

The kinematics of halo red giants
The present 337 radial velocities were obtained with typical accuraciesof 0.7 cm km/sec for 85 metal-poor field red giants, selected from thekinematically unbiased samples of Bond (1980) and Bidelman and MacConnel(1973). The multiply-observed stars suggest the field halo binaryfraction exceeds 10 percent. Using these velocities and those publishedby others, a sample of 174 red giants with Fe/H of not more than -1.5 isobtained. Their mean motion with respect to the local standard of restis -206 + or - 23 km/sec, and the velocity dispersions are sigma (R) of154 + or - 18 km/sec, sigma(theta) of 102 + or - 27 km/sec, andsigma(phi) of 107 + or - 15 km/sec. Using photometrically derivedabsolute magnitudes and published proper motions, orbital eccentricitiesare computed for 72 stars not already considered in a similar study ofsouthern stars by Norris et al. (1985). A few stars with e of less than0.4 are found.

Extremely metal-deficient red giants. IV - Equivalent widths for 36 halo giants
Further work on a study of 36 metal-poor field red giants is reported.Chemical abundances previously determined were based on model stellaratmosphere analyses of equivalent widths from photographic image-tubeechelle spectrograms obtained with with 4-m reflectors at Kitt Peak andCerro Tololo. A tabulation of the equivalent-width data (a total of 18,275 equivalent widths) is presented.

Extremely metal-deficient red giants. III - Chemical abundance patterns in field halo giants
The chemical compositions of 36 metal-poor red giants are determined,using model-stellar-atmosphere analysis techniques, and discussed on thebasis of image-tube echelle spectrograms obtained with the 4-mtelescopes at Kitt Peak National Observatory and Cerro TololoInter-American Observatory. By forcing Fe I and Fe II to yield the sameiron abundances, the spectroscopic stellar-surface gravities are found.The resulting gravities are about 0.25 dex lower than expected for 0.7solar-mass stars with the luminosities of red giants in metal-deficientglobular clusters like M92. The well-known overall enhancements of thelight metals (Na through Ti, except for Sc), and the deficiencies of theheavy s-process elements (Sr, Y, Zr, and Ba) in iron-poor stars areconfirmed by abundance analyses. The abundance trends revealed by theobservational material are described, and the implications fornucleosynthesis during halo formation are discussed.

A catalogue of Fe/H determinations, 1984 edition
The present version of the Cayrel de Strobel et al. (1981) catalog ofFe/H abundance ratio determinations contains 1921 values for 1035 stars,which represents an augmentation over the previous publication of 48 and47 percent, respectively. In addition, the literature search conductedis complete up to December, 1983. Stellar metal abundance, effectivetemperature, spectroscopic gravity, spectral type, and photometricindices are covered.

VBLUW photometry of some halo field giants
The Walraven VBLUW Photometry for a sample of 43 metal-deficient halogiants and 35 stars with known values for effective temperature (T eff),log g, and FE/H are presented. A calibration of the photometric indicesis determined in terms of the ratios 5040 K/T eff and FE/H. It is shownthat the photometric system has a good metallicity separation, yieldinga metallicity of -2.9 dex for CoD-38 deg 245 which contrasts with theextremely low value (-4.6 dex) obtained by Bessel and Norris (1981). Theimportance of this star as a standard for the calibration of photometricmetallicities is discussed. It is found that spectroscopic abundancemeasurements for stars with Fe/H of less than 2.7 are hampered by thecurrent lack of photometric data. A list of additional halo stars whichmight be suitable for low metallicity observation is presented.

Metal-Deficient Giants in the Galactic Field - Catalogue and Some Physical Parameters
Not Available

Nickel overabundances in extremely metal-deficient red giants
Local thermodynamic equilibrium model-atmosphere abundance analyses of37 metal-poor (the Fe/H abundance ratio being between -3.0 and -6.0)field red-giant stars are carried out on the basis of high-dispersionechelle spectrograms. Nickel has been found to be overabundant in allstars with an abundance ratio less than -1.8; for the mostmetal-deficient star in the sample, the Ni/Fe abundance ratio is equalto +0.8. The elements in extreme Population II stars were probablysynthesized in very massive Type II supernovae. Therefore, the resultsimply that such supernovae eject material with a much higher Ni/Fe ratiothan do the less massive and more typical supernovae that made theelements in the solar system and young stars.

Sottometti un nuovo articolo


Link relazionati

  • - Nessun link trovato -
Sottometti un nuovo link


Membro dei seguenti gruppi:


Osservazione e dati astrometrici

Costellazione:Scultore
Ascensione retta:00h58m43.87s
Declinazione:-30°05'57.7"
Magnitudine apparente:10.838
Moto proprio RA:63.7
Moto proprio Dec:21.2
B-T magnitude:11.556
V-T magnitude:10.898

Cataloghi e designazioni:
Nomi esatti
TYCHO-2 2000TYC 6999-109-1
USNO-A2.0USNO-A2 0525-00335058
HIPHIP 4585

→ Richiesta di ulteriori cataloghi da VizieR