Home     Per cominciare     Nuove immagini     Immagine del giorno     Blog New!     Login  

HD 27783


Contenuti

Immagini

Carica la tua immagine

DSS Images   Other Images


Articoli relazionati

The Geneva-Copenhagen survey of the solar neighbourhood. III. Improved distances, ages, and kinematics
Context: Ages, chemical compositions, velocity vectors, and Galacticorbits for stars in the solar neighbourhood are fundamental test datafor models of Galactic evolution. The Geneva-Copenhagen Survey of theSolar Neighbourhood (Nordström et al. 2004; GCS), amagnitude-complete, kinematically unbiased sample of 16 682 nearby F andG dwarfs, is the largest available sample with complete data for starswith ages spanning that of the disk. Aims: We aim to improve theaccuracy of the GCS data by implementing the recent revision of theHipparcos parallaxes. Methods: The new parallaxes yield improvedastrometric distances for 12 506 stars in the GCS. We also use theparallaxes to verify the distance calibration for uvby? photometryby Holmberg et al. (2007, A&A, 475, 519; GCS II). We add newselection criteria to exclude evolved cool stars giving unreliableresults and derive distances for 3580 stars with large parallax errorsor not observed by Hipparcos. We also check the GCS II scales of T_effand [Fe/H] and find no need for change. Results: Introducing thenew distances, we recompute MV for 16 086 stars, and U, V, W,and Galactic orbital parameters for the 13 520 stars that also haveradial-velocity measurements. We also recompute stellar ages from thePadova stellar evolution models used in GCS I-II, using the new valuesof M_V, and compare them with ages from the Yale-Yonsei andVictoria-Regina models. Finally, we compare the observed age-velocityrelation in W with three simulated disk heating scenarios to show thepotential of the data. Conclusions: With these revisions, thebasic data for the GCS stars should now be as reliable as is possiblewith existing techniques. Further improvement must await consolidationof the T_eff scale from angular diameters and fluxes, and the Gaiatrigonometric parallaxes. We discuss the conditions for improvingcomputed stellar ages from new input data, and for distinguishingdifferent disk heating scenarios from data sets of the size andprecision of the GCS.Full Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/501/941

Rotational and Radial Velocities for a Sample of 761 HIPPARCOS Giants and the Role of Binarity
We present rotational and radial velocities for a sample of 761 giantsselected from the Hipparcos Catalogue to lie within 100 pc of the Sun.Our original goal was to examine stellar rotation in field giants usingspectroscopic line broadening to look for evidence of excess rotationthat could be attributed to planets that were engulfed as the parentstars expanded. Thus we were obliged to investigate other sources ofline broadening, including tidal coupling in close binaries andmacroturbulence. For all the binaries in our sample with periods shorterthan 20 days the orbits have been circularized, while about half theorbits with periods in the range 20-100 days still show significanteccentricity. All our primaries in orbits shorter than 30 days show linebroadening consistent with synchronized rotation, while about half theprimaries with periods in the range 30-120 days are synchronized. Tostudy the dependence of rotation on stellar evolution when tidal effectsare not important, we used a subsample of single stars and members inwide binaries. We found evidence to suggest that the first dredge-up mayplay a role in speeding up the rotation of the observable outer layersof giants and that the rotational velocity of horizontal branch stars islarger by a few km s-1 than that of first-ascent giants withsimilar mass, effective temperature, and radius. Finally, we found threegiants that rotate more rapidly than expected. We conjecture that theyacquired their excess angular momentum by ingesting planets.Some of the results presented here used observations made with theMultiple Mirror Telescope, a joint facility of the SmithsonianInstitution and the University of Arizona.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Radial velocities, rotations, and duplicity of a sample of early F-type dwarfs
We present new radial and rotational velocities for 595 nearby early Fdwarfs, based on digital spectra cross-correlated with individuallyoptimised synthetic template spectra. The selection of optimumtemplates, the determination of rotational velocities, and theextraction of velocities from the blended spectra of double-linedspectroscopic binaries are discussed in some detail. We find 170spectroscopic binaries in the sample and determine orbits for 18double-lined and 2 single-lined binaries, including some spectroscopictriples. 73 stars are listed with too rapid rotation to yield usefulradial velocities (i.e. v sin i > 120 km~s^-1). We discuss the binaryfrequency in the sample, and the influence of unrecognised binaries onthe definition of clean metallicity groups of young F dwarfs and thedetermination of their kinematical properties. Tables 1, 5 and 6 areonly available, and Tables 2-4 also available in electronic form at theCDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html.

Mesures de vitesses radiales. VIII. Accompagnement AU sol DU programme d'observation DU satellite HIPPARCOS
We publish 1879 radial velocities of stars distributed in 105 fields of4^{\circ} \times 4^{\circ}. We continue the PPO series \cite[(Fehrenbachet al. 1987;]{Feh87} \cite[Duflot et al. 1990, 1992 and 1995),]{Du90}using the Fehrenbach objective prism method. Table 1 only available inelectronic form at CDS via to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Sottometti un nuovo articolo


Link relazionati

  • - Nessun link trovato -
Sottometti un nuovo link


Membro dei seguenti gruppi:


Osservazione e dati astrometrici

Costellazione:Giraffa
Ascensione retta:04h28m07.96s
Declinazione:+67°40'49.9"
Magnitudine apparente:8.042
Distanza:171.233 parsec
Moto proprio RA:28.7
Moto proprio Dec:-44
B-T magnitude:8.465
V-T magnitude:8.077

Cataloghi e designazioni:
Nomi esatti
HD 1989HD 27783
TYCHO-2 2000TYC 4329-1365-1
USNO-A2.0USNO-A2 1575-02035732
HIPHIP 20855

→ Richiesta di ulteriori cataloghi da VizieR