Home     Getting Started     New Pictures     Picture of the Day     Blog New!     Login  

HD 157089


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

A Keck HIRES Doppler Search for Planets Orbiting Metal-Poor Dwarfs. I. Testing Giant Planet Formation and Migration Scenarios
We describe a high-precision Doppler search for giant planets orbiting awell-defined sample of metal-poor dwarfs in the field. This experimentconstitutes a fundamental test of theoretical predictions, which willhelp discriminate between proposed giant planet formation and migrationmodels. We present details of the survey, as well as an overallassessment of the quality of our measurements, making use of the resultsfor stars that show no significant velocity variation.

Potassium abundances in nearby metal-poor stars
Aims.The potassium abundances for 58 metal-poor stars are determinedusing high-resolution spectroscopy. The abundance trends in stars ofdifferent population are discussed. Methods: .All abundanceresults have been derived from NLTE statistical equilibrium calculationsand spectrum synthesis methods. Results: .The NLTE corrections aresignificant (-0.20 to -0.55 dex) and they depend on the effectivetemperatures and surface gravities. The potassium abundances of thindisk, thick disk and halo stars show distinct trends, such as in thecase of the α-elements. [K/Fe] gradually increases with a decreasein [Fe/H] for thin disk stars, [K/Fe] of thick disk stars is nearlyconstant at [K/Fe] ~ +0.30 dex; halo stars also have nearly constantvalues of [K/Fe] ~ +0.20 dex. Conclusions: .The deriveddependence between [K/Fe] and [Fe/H] is in agreement with thetheoretical prediction of published model calculations of the chemicalevolution of the Galaxy. The nearly constant [K/Mg] ratio with smallscatter suggests that the nucleosynthesis of potassium is closelycoupled to the α-elements.

Effective temperature scale and bolometric corrections from 2MASS photometry
We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.

Chemical abundances of 32 mildly metal-poor stars
Context: .The formation scenario of the Galactic thick disk is anunresolved problem. Chemical abundances in long-lived dwarf stars of thethin and thick disks provide information of the Galactic diskformation.Aims.We present photospheric abundances of the O, Na, Mg, Al,Si, Ca, Sc, Ti, V, Cr, Mn, Ni, and Ba elements for 32 mildly metal-poorstars with [Fe/H]˜ -0.7. According to their kinematics, age, and [α/Fe] , sample stars are identified to thin disk, thick disk, andhalo population memberships. Element abundances for sample stars arediscussed as a function of metallicity.Methods.High resolution and highsignal-to-noise ratio spectra were obtained with the CoudéEchelle Spectrograph mounted on the 2.16 m telescope at the NationalAstronomical Observatories (Xinglong, China). Effective temperatureswere estimated from colour indices, and surface gravities from Hipparcosparallaxes. Stellar abundances were determined from a differential LTEanalysis. The kinematics parameters were calculated from the parallax,proper motion, and radial velocity. Stellar ages were determined fromtheoretical stellar evolution tracks.Results.The average age of thethick disk stars is older than the thin disk stars. Our elementabundance results extend and confirm previous works. The oxygen andother α-elements (Mg, Si, Ca, and Ti) abundances of thin and thickdisk stars show distinct trends at [Fe/H]≤-0.60. The [Al/Fe]behaviour is exactly as an α-element, although the separation for[Na/Fe] of thin and thick disk stars is not clear. The elements V, Cr,and Ni follow Fe very closely, and there is no offset between thin andthick disk stars, but the Sc and Mn abundance trends of the thin andthick disk stars are different, and [Ba/Fe] of thin disk and thick diskstars shows different behaviour.

Sulphur abundance in Galactic stars
We investigate sulphur abundance in 74 Galactic stars by using highresolution spectra obtained at ESO VLT and NTT telescopes. For the firsttime the abundances are derived, where possible, from three opticalmultiplets: Mult. 1, 6, and 8. By combining our own measurements withdata in the literature we assemble a sample of 253 stars in themetallicity range -3.2  [Fe/H]  +0.5. Two important features,which could hardly be detected in smaller samples, are obvious from thislarge sample: 1) a sizeable scatter in [S/Fe] ratios around [Fe/H]˜-1; 2) at low metallicities we observe stars with [S/Fe]˜ 0.4, aswell as stars with higher [S/Fe] ratios. The latter do not seem to bekinematically different from the former ones. Whether the latter findingstems from a distinct population of metal-poor stars or simply from anincreased scatter in sulphur abundances remains an open question.

The age of the Galactic thin disk from Th/Eu nucleocosmochronology. III. Extended sample
The first determination of the age of the Galactic thin disk from Th/Eunucleocosmochronology was accomplished by us in Papers I and II. Thepresent work aimed at reducing the age uncertainty by expanding thestellar sample with the inclusion of seven new objects - an increase by37%. A set of [Th/Eu] abundance ratios was determined from spectralsynthesis and merged with the results from Paper I. Abundances for thenew, extended sample were analyzed with the aid of a Galactic diskchemical evolution (GDCE) model developed by us is Paper II. The resultwas averaged with an estimate obtained in Paper II from a conjunction ofliterature data and our GDCE model, providing our final, adopted diskage TG=(8.8±1.7)~Gyr with a reduction of 0.1 Gyr (6%)in the uncertainty. This value is compatible with the most up-to-datewhite dwarf age determinations (≲10 Gyr). Considering that the halois currently presumed to be (13.5±0.7)~Gyr old, our resultprompts groups developing Galactic formation models to include an hiatusof (4.7±1.8)~Gyr between the formation of halo and disk.

Abundance trends in kinematical groups of the Milky Way's disk
We have compiled a large catalogue of metallicities and abundance ratiosfrom the literature in order to investigate abundance trends of severalalpha and iron peak elements in the thin disk and the thick disk of theGalaxy. The catalogue includes 743 stars with abundances of Fe, O, Mg,Ca, Ti, Si, Na, Ni and Al in the metallicity range -1.30 < [Fe/H]< +0.50. We have checked that systematic differences betweenabundances measured in the different studies were lower than randomerrors before combining them. Accurate distances and proper motions fromHipparcos and radial velocities from several sources have been retreivedfor 639 stars and their velocities (U, V, W) and galactic orbits havebeen computed. Ages of 322 stars have been estimated with a Bayesianmethod of isochrone fitting. Two samples kinematically representative ofthe thin and thick disks have been selected, taking into account theHercules stream which is intermediate in kinematics, but with a probabledynamical origin. Our results show that the two disks are chemicallywell separated, they overlap greatly in metallicity and both showparallel decreasing alpha elements with increasing metallicity, in theinterval -0.80 < [Fe/H] < -0.30. The Mg enhancement with respectto Fe of the thick disk is measured to be 0.14 dex. An even largerenhancement is observed for Al. The thick disk is clearly older than thethin disk with tentative evidence of an AMR over 2-3 Gyr and a hiatus instar formation before the formation of the thin disk. We do not observea vertical gradient in the metallicity of the thick disk. The Herculesstream has properties similar to that of the thin disk, with a widerrange of metallicity. Metal-rich stars assigned to the thick disk andsuper-metal-rich stars assigned to the thin disk appear as outliers inall their properties.

α-, r-, and s-process element trends in the Galactic thin and thick disks
From a detailed elemental abundance analysis of 102 F and G dwarf starswe present abundance trends in the Galactic thin and thick disks for 14elements (O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, Y, Ba, and Eu).Stellar parameters and elemental abundances (except for Y, Ba and Eu)for 66 of the 102 stars were presented in our previous studies (Bensbyet al. [CITE], A&A, 410, 527, [CITE], A&A, 415, 155). The 36stars that are new in this study extend and confirm our previous resultsand allow us to draw further conclusions regarding abundance trends. Thes-process elements Y and Ba, and the r-element Eu have also beenconsidered here for the whole sample for the first time. With this newlarger sample we now have the following results: 1) smooth and distinctabundance trends that for the thin and thick disks are clearlyseparated; 2) the α-element trends for the thick disk show typicalsignatures from the enrichment of SN Ia; 3) the thick disk stellarsample is in the mean older than the thin disk stellar sample; 4) thethick disk abundance trends are invariant with galactocentric radii(R_m); 5) the thick disk abundance trends appear to be invariant withvertical distance (Z_max) from the Galactic plane. Adding furtherevidence from the literaure we argue that a merger/interacting scenariowith a companion galaxy to produce a kinematical heating of the stars(that make up today's thick disk) in a pre-existing old thin disk is themost likely formation scenario for the Galactic thick disk. The 102stars have -1 ≲ [Fe/H] ≲ +0.4 and are all in the solarneighbourhood. Based on their kinematics they have been divided into athin disk sample and a thick disk sample consisting of 60 and 38 stars,respectively. The remaining 4 stars have kinematics that make themkinematically intermediate to the two disks. Their chemical abundancesalso place them in between the two disks. Which of the two diskpopulations these 4 stars belong to, or if they form a distinctpopulation of their own, can at the moment not be settled. The 66 starsfrom our previous studies were observed with the FEROS spectrograph onthe ESO 1.5-m telescope and the CES spectrograph on the ESO 3.6-mtelescope. Of the 36 new stars presented here 30 were observed with theSOFIN spectrograph on the Nordic Optical Telescope on La Palma, 3 withthe UVES spectrograph on VLT/UT2, and 3 with the FEROS spectrograph onthe ESO 1.5-m telescope. All spectra have high signal-to-noise ratios(typically S/N≳ 250) and high resolution (R˜ 80 000, 45 000,and 110 000 for the SOFIN, FEROS, and UVES spectra, respectively).Based on observations collected at the Nordic Optical Telescope on LaPalma, Spain, and at the European Southern Observatories on La Silla andParanal, Chile, Proposals # 65.L-0019(B), 67.B-0108(B), 69.B-0277. FullTables [see full text], [see full text] and [see full text] are onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/433/185

The Indo-US Library of Coudé Feed Stellar Spectra
We have obtained spectra for 1273 stars using the 0.9 m coudéfeed telescope at Kitt Peak National Observatory. This telescope feedsthe coudé spectrograph of the 2.1 m telescope. The spectra havebeen obtained with the no. 5 camera of the coudé spectrograph anda Loral 3K×1K CCD. Two gratings have been used to provide spectralcoverage from 3460 to 9464 Å, at a resolution of ~1 Å FWHMand at an original dispersion of 0.44 Å pixel-1. For885 stars we have complete spectra over the entire 3460 to 9464 Åwavelength region (neglecting small gaps of less than 50 Å), andpartial spectral coverage for the remaining stars. The 1273 stars havebeen selected to provide broad coverage of the atmospheric parametersTeff, logg, and [Fe/H], as well as spectral type. The goal ofthe project is to provide a comprehensive library of stellar spectra foruse in the automated classification of stellar and galaxy spectra and ingalaxy population synthesis. In this paper we discuss thecharacteristics of the spectral library, viz., details of theobservations, data reduction procedures, and selection of stars. We alsopresent a few illustrations of the quality and information available inthe spectra. The first version of the complete spectral library is nowpublicly available from the National Optical Astronomy Observatory(NOAO) via ftp and http.

Synthetic Lick Indices and Detection of α-enhanced Stars. II. F, G, and K Stars in the -1.0 < [Fe/H] < +0.50 Range
We present an analysis of 402 F, G, and K solar neighborhood stars, withaccurate estimates of [Fe/H] in the range -1.0 to +0.5 dex, aimed at thedetection of α-enhanced stars and at the investigation of theirkinematical properties. The analysis is based on the comparison of 571sets of spectral indices in the Lick/IDS system, coming from fourdifferent observational data sets, with synthetic indices computed withsolar-scaled abundances and with α-element enhancement. We useselected combinations of indices to single out α-enhanced starswithout requiring previous knowledge of their main atmosphericparameters. By applying this approach to the total data set, we obtain alist of 60 bona fide α-enhanced stars and of 146 stars withsolar-scaled abundances. The properties of the detected α-enhancedand solar-scaled abundance stars with respect to their [Fe/H] values andkinematics are presented. A clear kinematic distinction betweensolar-scaled and α-enhanced stars was found, although a one-to-onecorrespondence to ``thin disk'' and ``thick disk'' components cannot besupported with the present data.

Stellar Chemical Signatures and Hierarchical Galaxy Formation
To compare the chemistries of stars in the Milky Way dwarf spheroidal(dSph) satellite galaxies with stars in the Galaxy, we have compiled alarge sample of Galactic stellar abundances from the literature. Whenkinematic information is available, we have assigned the stars tostandard Galactic components through Bayesian classification based onGaussian velocity ellipsoids. As found in previous studies, the[α/Fe] ratios of most stars in the dSph galaxies are generallylower than similar metallicity Galactic stars in this extended sample.Our kinematically selected stars confirm this for the Galactic halo,thin-disk, and thick-disk components. There is marginal overlap in thelow [α/Fe] ratios between dSph stars and Galactic halo stars onextreme retrograde orbits (V<-420 km s-1), but this is notsupported by other element ratios. Other element ratios compared in thispaper include r- and s-process abundances, where we find a significantoffset in the [Y/Fe] ratios, which results in a large overabundance in[Ba/Y] in most dSph stars compared with Galactic stars. Thus, thechemical signatures of most of the dSph stars are distinct from thestars in each of the kinematic components of the Galaxy. This resultrules out continuous merging of low-mass galaxies similar to these dSphsatellites during the formation of the Galaxy. However, we do not ruleout very early merging of low-mass dwarf galaxies, since up to one-halfof the most metal-poor stars ([Fe/H]<=-1.8) have chemistries that arein fair agreement with Galactic halo stars. We also do not rule outmerging with higher mass galaxies, although we note that the LMC and theremnants of the Sgr dwarf galaxy are also chemically distinct from themajority of the Galactic halo stars. Formation of the Galaxy's thickdisk by heating of an old thin disk during a merger is also not ruledout; however, the Galaxy's thick disk itself cannot be comprised of theremnants from a low-mass (dSph) dwarf galaxy, nor of a high-mass dwarfgalaxy like the LMC or Sgr, because of differences in chemistry.The new and independent environments offered by the dSph galaxies alsoallow us to examine fundamental assumptions related to thenucleosynthesis of the elements. The metal-poor stars ([Fe/H]<=-1.8)in the dSph galaxies appear to have lower [Ca/Fe] and [Ti/Fe] than[Mg/Fe] ratios, unlike similar metallicity stars in the Galaxy.Predictions from the α-process (α-rich freeze-out) would beconsistent with this result if there have been a lack of hypernovae indSph galaxies. The α-process could also be responsible for thevery low Y abundances in the metal-poor stars in dSph's; since [La/Eu](and possibly [Ba/Eu]) are consistent with pure r-process results, thelow [Y/Eu] suggests a separate r-process site for this light(first-peak) r-process element. We also discuss SNe II rates and yieldsas other alternatives, however. In stars with higher metallicities([Fe/H]>=-1.8), contributions from the s-process are expected; [(Y,La, and Ba)/Eu] all rise as expected, and yet [Ba/Y] is still muchhigher in the dSph stars than similar metallicity Galactic stars. Thisresult is consistent with s-process contributions from lower metallicityAGB stars in dSph galaxies, and is in good agreement with the slowerchemical evolution expected in the low-mass dSph galaxies relative tothe Galaxy, such that the build-up of metals occurs over much longertimescales. Future investigations of nucleosynthetic constraints (aswell as galaxy formation and evolution) will require an examination ofmany stars within individual dwarf galaxies.Finally, the Na-Ni trend reported in 1997 by Nissen & Schuster isconfirmed in Galactic halo stars, but we discuss this in terms of thegeneral nucleosynthesis of neutron-rich elements. We do not confirm thatthe Na-Ni trend is related to the accretion of dSph galaxies in theGalactic halo.

Empirically Constrained Color-Temperature Relations. II. uvby
A new grid of theoretical color indices for the Strömgren uvbyphotometric system has been derived from MARCS model atmospheres and SSGsynthetic spectra for cool dwarf and giant stars having-3.0<=[Fe/H]<=+0.5 and 3000<=Teff<=8000 K. Atwarmer temperatures (i.e., 8000-2.0. To overcome thisproblem, the theoretical indices at intermediate and high metallicitieshave been corrected using a set of color calibrations based on fieldstars having well-determined distances from Hipparcos, accurateTeff estimates from the infrared flux method, andspectroscopic [Fe/H] values. In contrast with Paper I, star clustersplayed only a minor role in this analysis in that they provided asupplementary constraint on the color corrections for cool dwarf starswith Teff<=5500 K. They were mainly used to test thecolor-Teff relations and, encouragingly, isochrones thatemploy the transformations derived in this study are able to reproducethe observed CMDs (involving u-v, v-b, and b-y colors) for a number ofopen and globular clusters (including M67, the Hyades, and 47 Tuc)rather well. Moreover, our interpretations of such data are verysimilar, if not identical, with those given in Paper I from aconsideration of BV(RI)C observations for the sameclusters-which provides a compelling argument in support of thecolor-Teff relations that are reported in both studies. Inthe present investigation, we have also analyzed the observedStrömgren photometry for the classic Population II subdwarfs,compared our ``final'' (b-y)-Teff relationship with thosederived empirically in a number of recent studies and examined in somedetail the dependence of the m1 index on [Fe/H].Based, in part, on observations made with the Nordic Optical Telescope,operated jointly on the island of La Palma by Denmark, Finland, Iceland,Norway, and Sweden, in the Spanish Observatorio del Roque de losMuchachos of the Instituto de Astrofisica de Canarias.Based, in part, on observations obtained with the Danish 1.54 mtelescope at the European Southern Observatory, La Silla, Chile.

A new Böhm-Vitense gap in the temperature range 5560 to 5610 K in the main sequence hm-Vitense gap in the main sequence
Highly precise temperatures (σ = 10-15 K) have been determinedfrom line depth ratios for a set of 248 F-K field dwarfs of about solarmetallicity (-0.5 < [Fe/H] < +0.4), based on high resolution (R=42000), high S/N echelle spectra. A new gap has been discovered in thedistribution of stars on the Main Sequence in the temperature range 5560to 5610 K. This gap coincides with a jump in the microturbulent velocityVt and the well-known Li depression near 5600 K in fielddwarfs and open clusters. As the principal cause of the observeddiscontinuities in stellar properties we propose the penetration of theconvective zone into the inner layers of stars slightly less massivethan the Sun and related to it, a change in the temperature gradient.Based on spectra collected with the ELODIE spectrograph at the 1.93-mtelescope of the Observatoire de Haute-Provence (France).Full Table 1 is only available in electronic form athttp://www.edpsciences.org

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

On the correlation of elemental abundances with kinematics among galactic disk stars
We have performed the detailed analysis of 174 high-resolution spectraof FGK dwarfs obtained with the ELODIE echelle spectrograph at theObservatoire de Haute-Provence. Abundances of Fe, Si and Ni have beendetermined from equivalent widths under LTE approximation, whereasabundances of Mg have been determined under NLTE approximation usingequivalent widths of 4 lines and profiles of 5 lines. Spatial velocitieswith an accuracy better than 1 km s-1, as well as orbits,have been computed for all stars. They have been used to define 2subsamples kinematically representative of the thin disk and the thickdisk in order to highlight their respective properties. A transitionoccurs at [Fe/H] =-0.3. Stars more metal-rich than this value have aflat distribution with Zmax;<1 kpc and σW<20 km s-1, and a narrow distribution of [α/Fe].There exist stars in this metallicity regime which cannot belong to thethin disk because of their excentric orbits, neither to the thick diskbecause of their low scale height. Several thin disk stars areidentified down to [Fe/H] =-0.80. Their Mg enrichment is lower thanthick disk stars with the same metallicity. We confirm from a largersample the results of Feltzing et al. (\cite{felt03}) and Bensby et al.(\cite{ben03}) showing a decrease of [α/Fe] with [Fe/H] in thethick disk interpreted as the signature of the SNIa which haveprogressively enriched the ISM with iron. However our data suggest thatthe star formation in the thick disk stopped when the enrichment was[Fe/H] =-0.30, [Mg/Fe] =+0.20, [Si/Fe] =+0.17. A vertical gradient in[α/Fe] may exist in the thick disk but should be confirmed with alarger sample. Finally we have identified 2 new candidates of the HR1614moving group.Based on spectra collected with the ELODIE spectrograph at the 1.93-mtelescope of the Observatoire de Haute Provence (France).Tables 3 and 8 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/551

Oxygen trends in the Galactic thin and thick disks
We present oxygen abundances for 72 F and G dwarf stars in the solarneighbourhood. Using the kinematics of the stars we divide them into twosub-samples with space velocities that are typical for the thick andthin disks, respectively. The metallicities of the stars range from[Fe/H] ≈ -0.9 to +0.4 and we use the derived oxygen abundances of thestars to: (1) perform a differential study of the oxygen trends in thethin and the thick disk; (2) to follow the trend of oxygen in the thindisk to the highest metallicities. We analyze the forbidden oxygen linesat 6300 Å and 6363 Å as well as the (NLTE afflicted) tripletlines around 7774 Å. For the forbidden line at 6300 Å wehave spectra of very high S/N (>400) and resolution (R ≳ 215000). This has enabled a very accurate modeling of the oxygen line andthe blending Ni lines. The high internal accuracy in our determinationof the oxygen abundances from this line is reflected in the very tighttrends we find for oxygen relative to iron. From these abundances we areable to draw the following major conclusions: (i) That the [O/Fe] trendat super-solar [Fe/H] continues downward which is in concordance withmodels of Galactic chemical evolution. This is not seen in previousstudies as it has not been possible to take the blending Ni lines in theforbidden oxygen line at 6300 Å properly into account; (ii) Thatthe oxygen trends in the thin and the thick disks are distinctlydifferent. This confirms and extends previous studies of the otherα-elements; (iii) That oxygen does not follow Mg at super-solarmetallicities; (iv) We also provide an empirical NLTE correction for theinfrared O I triplet that could be used for dwarf star spectra with aS/N such that only the triplet lines can be analyzed well, e.g. stars atlarge distances; (v) Finally, we find that Gratton et al. (1999)overestimate the NLTE corrections for the permitted oxygen triplet linesat ˜7774 Å for the parameter space that our stars span.Based on observations collected at the European Southern Observatory, LaSilla and Paranal, Chile, Proposals #65.L-0019, 67.B-0108, and69.B-0277.The full Table 4 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?/A+A/415/155

Abundances of Na, Mg and Al in nearby metal-poor stars
To determine the population membership of nearby stars we exploreabundance results obtained for the light neutron-rich elements23Na and 27 Al in a small sample of moderatelymetal-poor stars. Spectroscopic observations are limited to the solarneighbourhood so that gravities can be determined from HIPPARCOSparallaxes, and the results are confronted with those for a separatesample of more metal-poor typical halo stars. Following earlierinvestigations, the abundances of Na, Mg and Al have been derived fromNLTE statistical equilibrium calculations used as input to line profilesynthesis. Compared with LTE the abundances require systematiccorrections, with typical values of +0.05 for [Mg/Fe], -0.1 for [Na/Fe]and +0.2 for [Al/Fe] in thick disk stars where [Fe/H] ˜ -0.6. Inmore metal-poor halo stars these values reach +0.1, -0.4, and +0.5,respectively, differences that can no longer be ignored.After careful selection of a clean subsample free from suspected orknown binaries and peculiar stars, we find that [Na/Mg] and [Al/Mg], incombination with [Mg/Fe], space velocities and stellar evolutionaryages, make possible an individual discrimination between thick disk andhalo stars. At present, this evidence is limited by the small number ofstars analyzed. We identify a gap at [Al/Mg] ˜ -0.15 and [Fe/H]˜ -1.0 that isolates stars of the thick disk from those in the halo.A similar separation occurs at [Na/Mg] ˜ -0.4. We do not confirm theage gap between thin and thick disk found by Fuhrmann. Instead we findan age boundary between halo and thick disk stars, however, with anabsolute value of 14 Gyr that must be considered as preliminary. Whilethe stellar sample is by no means complete, the resulting abundancesindicate the necessity to revise current models of chemical evolutionand/or stellar nucleosynthesis to allow for an adequate production ofneutron-rich species in early stellar generations.Based on observations collected at the German-Spanish AstronomicalCenter, Calar Alto (CAHA H01-2.2-002) and at the European SouthernObservatory, Chile (ESO 67.D-0086).

New Metallicity Calibration Down to [Fe/H] = -2.75 dex
We have taken 88 dwarfs, covering the colour-index interval 0.37 <=(B-V)0 <= 1.07mag, with metallicities -2.70 <= [Fe/H]<= +0.26dex, from three different sources for new metallicitycalibration. The catalogue of Cayrel de Stroble et al. (2001), whichincludes 65% of the stars in our sample, supplies detailed informationon abundances for stars with determination based on high-resolutionspectroscopy. In constructing the new calibration we have used as`corner stones' 77 stars which supply at least one of the followingconditions: (i) the parallax is larger than 10mas (distance relative tothe Sun less than 100pc) and the galactic latitude is absolutely higherthan 30° (ii) the parallax is rather large, if the galactic latitudeis absolutely low and vice versa. Contrary to previous investigations, athird-degree polynomial is fitted for the new calibration: [Fe/H]=0.10 -2.76δ - 24.04δ2 + 30.00δ3. Thecoefficients were evaluated by the least-squares method, without regardto the metallicity of Hyades. However, the constant term is in the rangeof metallicity determined for this cluster, i.e.0.08<=[Fe/H]<=0.11dex. The mean deviation and the mean error inour work are equal to those of Carney (1979), for [Fe/H] >= -1.75dexwhere Carney's calibration is valid

Sodium Abundances in Stellar Atmospheres with Differing Metallicities
The non-LTE sodium abundances of 100 stars with metallicities-3<[Fe/H]<0.3 are determined using high-dispersion spectra withhigh signal-to-noise ratios. The sodium abundances [Na/Fe] obtained areclose to the solar abundance and display a smaller scatter than valuespublished previously. Giants (logg<3.8) with [Fe/H]<-1 do notdisplay overabundances of sodium, and their sodium abundances do notshow an anticorrelation with the oxygen abundance, in contrast toglobular-cluster giants. They likewise do not show sodium-abundancevariations with motion along the giant branch. No appreciable decreasein the sodium abundance was detected for dwarfs (logg>3.8) withmetallicities -2<[Fe/H]<-1. The observed relation between [Na/Fe]and [Fe/H] is in satisfactory agreement with the theoreticalcomputations of Samland, which take into account the metallicitydependence of the sodium yield and a number of other factors affectingthe distribution of elements in the Galaxy during the course of itsevolution.

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

Elemental abundance trends in the Galactic thin and thick disks as traced by nearby F and G dwarf stars
Based on spectra from F and G dwarf stars, we present elementalabundance trends in the Galactic thin and thick disks in the metallicityregime -0.8<˜ [Fe/H] <˜ +0.4. Our findings can besummarized as follows. 1) Both the thin and the thick disks show smoothand distinct abundance trends that, at sub-solar metallicities, areclearly separated. 2) For the alpha -elements the thick disk showssignatures of chemical enrichment from SNe type Ia. 3) The age of thethick disk sample is in the mean older than the thin disk sample. 4)Kinematically, there exist thick disk stars with super-solarmetallicities. Based on these findings, together with other constraintsfrom the literature, we discuss different formation scenarios for thethick disk. We suggest that the currently most likely formation scenariois a violent merger event or a close encounter with a companion galaxy.Based on kinematics the stellar sample was selected to contain starswith high probabilities of belonging either to the thin or to the thickGalactic disk. The total number of stars are 66 of which 21 belong tothe thick disk and 45 to the thin disk. The analysis is based onhigh-resolution spectra with high signal-to-noise (R ~ 48 000 and S/Ngtrsim 150, respectively) recorded with the FEROS spectrograph on LaSilla, Chile. Abundances have been determined for four alpha -elements(Mg, Si, Ca, and Ti), for four even-nuclei iron peak elements (Cr, Fe,Ni, and Zn), and for the light elements Na and Al, from equivalent widthmeasurements of ~ 30 000 spectral lines. An extensive investigation ofthe atomic parameters, log gf-values in particular, have been performedin order to achieve abundances that are trustworthy. Noteworthy is thatwe find for Ti good agreement between the abundances from Ti I and TiIi. Our solar Ti abundances are in concordance with the standardmeteoritic Ti abundanceBased on observations collected at the European Southern Observatory, LaSilla, Chile, Proposals #65.L-0019(B) and 67.B-0108(B).Full Tables \ref{tab:linelist} and \ref{tab:abundances} are onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/410/527

STELIB: A library of stellar spectra at R ~ 2000
We present STELIB, a new spectroscopic stellar library, available athttp://webast.ast.obs-mip.fr/stelib. STELIB consists of an homogeneouslibrary of 249 stellar spectra in the visible range (3200 to 9500Å), with an intermediate spectral resolution (la 3 Å) andsampling (1 Å). This library includes stars of various spectraltypes and luminosity classes, spanning a relatively wide range inmetallicity. The spectral resolution, wavelength and spectral typecoverage of this library represents a substantial improvement overprevious libraries used in population synthesis models. The overallabsolute photometric uncertainty is 3%.Based on observations collected with the Jacobus Kaptein Telescope,(owned and operated jointly by the Particle Physics and AstronomyResearch Council of the UK, The Nederlandse Organisatie voorWetenschappelijk Onderzoek of The Netherlands and the Instituto deAstrofísica de Canarias of Spain and located in the SpanishObservatorio del Roque de Los Muchachos on La Palma which is operated bythe Instituto de Astrofísica de Canarias), the 2.3 mtelescope of the Australian National University at Siding Spring,Australia, and the VLT-UT1 Antu Telescope (ESO).Tables \ref{cat1} to \ref{cat6} and \ref{antab1} to A.7 are onlyavailable in electronic form at http://www.edpsciences.org. The StellarLibrary STELIB library is also available at the CDS, via anonymous ftpto cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/402/433

Oxygen line formation in late-F through early-K disk/halo stars. Infrared O I triplet and [O I] lines
In order to investigate the formation of O I 7771-5 and [O I] 6300/6363lines, extensive non-LTE calculations for neutral atomic oxygen werecarried out for wide ranges of model atmosphere parameters, which areapplicable to early-K through late-F halo/disk stars of variousevolutionary stages.The formation of the triplet O I lines was found to be well described bythe classical two-level-atom scattering model, and the non-LTEcorrection is practically determined by the parameters of theline-transition itself without any significant relevance to the detailsof the oxygen atomic model. This simplifies the problem in the sensethat the non-LTE abundance correction is essentially determined only bythe line-strength (Wlambda ), if the atmospheric parametersof Teff, log g, and xi are given, without any explicitdependence of the metallicity; thus allowing a useful analytical formulawith tabulated numerical coefficients. On the other hand, ourcalculations lead to the robust conclusion that LTE is totally valid forthe forbidden [O I] lines.An extensive reanalysis of published equivalent-width data of O I 7771-5and [O I] 6300/6363 taken from various literature resulted in theconclusion that, while a reasonable consistency of O I and [O I]abundances was observed for disk stars (-1 <~ [Fe/H] <~ 0), theexistence of a systematic abundance discrepancy was confirmed between OI and [O I] lines in conspicuously metal-poor halo stars (-3 <~[Fe/H] <~ -1) without being removed by our non-LTE corrections, i.e.,the former being larger by ~ 0.3 dex at -3 <~ [Fe/H] <~ -2.An inspection of the parameter-dependence of this discordance indicatesthat the extent of the discrepancy tends to be comparatively lessenedfor higher Teff/log g stars, suggesting the preference ofdwarf (or subgiant) stars for studying the oxygen abundances ofmetal-poor stars.Tables 2, 5, and 7 are only available in electronic form, at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/402/343 and Table\ref{tab3} is only available in electronic form athttp://www.edpsciences.org

Statistical cataloging of archival data for luminosity class IV-V stars. II. The epoch 2001 [Fe/H] catalog
This paper describes the derivation of an updated statistical catalog ofmetallicities. The stars for which those metallicities apply are ofspectral types F, G, and K, and are on or near the main sequence. Theinput data for the catalog are values of [Fe/H] published before 2002February and derived from lines of weak and moderate strength. Theanalyses used to derive the data have been based on one-dimensional LTEmodel atmospheres. Initial adjustments which are applied to the datainclude corrections to a uniform temperature scale which is given in acompanion paper (see Taylor \cite{t02}). After correction, the data aresubjected to a statistical analysis. For each of 941 stars considered,the results of that analysis include a mean value of [Fe/H], an rmserror, an associated number of degrees of freedom, and one or moreidentification numbers for source papers. The catalog of these resultssupersedes an earlier version given by Taylor (\cite{t94b}).Catalog is only available in electronic form at the CDS via anonymousftp cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/731

Statistical cataloging of archival data for luminosity class IV-V stars. I. The epoch 2001 temperature catalog
This paper is one of a pair in which temperatures and metallicitycatalogs for class IV-V stars are considered. The temperature catalogdescribed here is derived from a calibration based on stellar angulardiameters. If published calibrations of this kind are compared by usingcolor-index transformations, temperature-dependent differences among thecalibrations are commonly found. However, such differences are minimizedif attention is restricted to calibrations based on Johnson V-K. Acalibration of this sort from Di Benedetto (\cite{dib98}) is thereforetested and adopted. That calibration is then applied to spectroscopicand photometric data, with the latter predominating. Cousins R-Iphotometry receives special attention because of its high precision andlow metallicity sensitivity. Testing of temperatures derived from thecalibration suggests that their accuracy and precision are satisfactory,though further testing will be warranted as new results appear. Thesetemperatures appear in the catalog as values of theta equiv5040/T(effective). Most of these entries are accompanied by measured orderived values of Cousins R-I. Entries are given for 951 stars.Catalog is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/721

IRFM temperature calibrations for the Vilnius, Geneva, RI(C) and DDO photometric systems
We have used the infrared flux method (IRFM) temperatures of a largesample of late type dwarfs given by Alonso et al. (\cite{alonso:irfm})to calibrate empirically the relations Teff=f (colour,[Fe/H]) for the Vilnius, Geneva, RI(C) (Cousins) and DDOphotometric systems. The resulting temperature scale and intrinsiccolour-colour diagrams for these systems are also obtained. From thisscale, the solar colours are derived and compared with those of thesolar twin 18 Sco. Since our work is based on the same Teffand [Fe/H] values used by Alonso et al. (\cite{alonso:escala}) tocalibrate other colours, we now have an homogeneous calibration for alarge set of photometric systems.Based on data from the GCPD.

α Element Abundances in Mildly Metal-Poor Stars
We present [O/Fe] and other α-elements/Fe ratios in a sample of 24mildly metal-poor stars. The sample stars are thought to be brighterthan 9.0 magnitude and have available uvby photometric data. Also, basedon the typical LTE abundance analysis, we find that [Si/Fe] and [Ca/Fe]are correlated with each other. Combining the kinematic data and themetallicity, we can classify the sample stars into three groups. Anabundance analysis shows some evidence that these groups are chemicallydiscrete from each other. Further, the general trend of a decreasingoverabundance of the α elements with increasing metallicity hasbeen confirmed.

Behavior of Sulfur Abundances in Metal-poor Giants and Dwarfs
LTE and non-LTE (NLTE) abundances of sulfur in six metal-poor giants and61 dwarfs (62 dwarfs including the Sun) were explored in the range of-3<~[Fe/H]<~+0.5 using high-resolution, high signal-to-noise ratiospectra of the S I 8693.9 and 8694.6 Å lines observed by us andmeasured by François and Clegg, Lambert, & Tomkin. NLTEeffects in S abundances are found to be small and practicallynegligible. The behavior of [S/Fe] versus [Fe/H] exhibits a linearincreasing trend without plateau with decreasing [Fe/H]. Combining ourresults with those available in the literature, we find that the slopeof the increasing trend is -0.25 in the NLTE behavior of [S/Fe], whichis comparable to that observed in [O/Fe]. The observed behavior of S mayrequire chemical evolution models of the Galaxy, in which scenarios ofhypernovae nucleosynthesis and/or time-delayed deposition intointerstellar medium are incorporated.

Abundances of Cu and Zn in metal-poor stars: Clues for Galaxy evolution
We present new observations of copper and zinc abundances in 90metal-poor stars, belonging to the metallicity range -3<[Fe/H]<-0.5. The present study is based on high resolutionspectroscopic measurements collected at the Haute Provence Observatoire(R= 42 000, S/N>100). The trend of Cu and Zn abundances as a functionof the metallicity [Fe/H] is discussed and compared to that of otherheavy elements beyond iron. We also estimate spatial velocities andgalactic orbital parameters for our target stars in order to disentanglethe population of disk stars from that of halo stars using kinematiccriteria. In the absence of a firm a priori knowledge of thenucleosynthesis mechanisms controlling Cu and Zn production, and of therelative stellar sites, we derive constraints on these last from thetrend of the observed ratios [Cu/Fe] and [Zn/Fe] throughout the historyof the Galaxy, as well as from a few well established properties ofbasic nucleosynthesis processes in stars. We thus confirm that theproduction of Cu and Zn requires a number of different sources (neutroncaptures in massive stars, s-processing in low and intermediate massstars, explosive nucleosynthesis in various supernova types). We alsoattempt a ranking of the relative roles played by different productionmechanisms, and verify these hints through a simple estimate of thegalactic enrichment in Cu and Zn. In agreement with suggestionspresented earlier, we find evidence that type Ia Supernovae must play arelevant role, especially for the production of Cu. Based on the spectracollected with the 1.93-m telescope of Haute Provence Observatory.

HIPPARCOS age-metallicity relation of the solar neighbourhood disc stars
We derive age-metallicity relations (AMRs) and orbital parameters forthe 1658 solar neighbourhood stars to which accurate distances aremeasured by the HIPPARCOS satellite. The sample stars comprise 1382 thindisc stars, 229 thick disc stars, and 47 halo stars according to theirorbital parameters. We find a considerable scatter for thin disc AMRalong the one-zone Galactic chemical evolution (GCE) model. Orbits andmetallicities of thin disc stars show now clear relation each other. Thescatter along the AMR exists even if the stars with the same orbits areselected. We examine simple extension of one-zone GCE models whichaccount for inhomogeneity in the effective yield and inhomogeneous starformation rate in the Galaxy. Both extensions of the one-zone GCE modelcannot account for the scatter in age - [Fe/H] - [Ca/Fe] relationsimultaneously. We conclude, therefore, that the scatter along the thindisc AMR is an essential feature in the formation and evolution of theGalaxy. The AMR for thick disc stars shows that the star formationterminated 8 Gyr ago in the thick disc. As already reported by Grattonet al. (\cite{Gratton_et.al.2000}) and Prochaska et al.(\cite{Prochaska_et.al.2000}), thick disc stars are more Ca-rich thanthin disc stars with the same [Fe/H]. We find that thick disc stars showa vertical abundance gradient. These three facts, the AMR, verticalgradient, and [Ca/Fe]-[Fe/H] relation, support monolithic collapseand/or accretion of satellite dwarf galaxies as likely thick discformation scenarios. Tables 2 and 3 are only available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)or via http:/ /cdsweb.u-strasbg.fr/ cgi-bin/qcat?J/ A+A/394/927

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Ophiuchus
Right ascension:17h21m07.06s
Declination:+01°26'35.0"
Apparent magnitude:6.963
Distance:38.64 parsecs
Proper motion RA:-166
Proper motion Dec:270.5
B-T magnitude:7.641
V-T magnitude:7.019

Catalogs and designations:
Proper Names
HD 1989HD 157089
TYCHO-2 2000TYC 400-1393-1
USNO-A2.0USNO-A2 0900-09646484
HIPHIP 84905

→ Request more catalogs and designations from VizieR