Home     Getting Started     New Pictures     Picture of the Day     Blog New!     Login  

HD 42083


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Spectroscopic orbits of potential interferometric binaries
We are obtaining high-resolution, red-wavelength spectra at McDonald andKitt Peak National Observatory to improve the orbits of knownspectroscopic binaries that are potential targets for ground-basedoptical interferometers. The combination of such observations willproduce three-dimensional orbits from which very accurate masses andorbital parallaxes can be obtained for double-lined systems. Thisspectroscopic program will be expanded and placed on the menu of the 2meter Automatic Spectroscopic Telescope of Tennessee State Universityonce it commences routine operation.

Rotational velocities of A-type stars in the northern hemisphere. II. Measurement of v sin i
This work is the second part of the set of measurements of v sin i forA-type stars, begun by Royer et al. (\cite{Ror_02a}). Spectra of 249 B8to F2-type stars brighter than V=7 have been collected at Observatoirede Haute-Provence (OHP). Fourier transforms of several line profiles inthe range 4200-4600 Å are used to derive v sin i from thefrequency of the first zero. Statistical analysis of the sampleindicates that measurement error mainly depends on v sin i and thisrelative error of the rotational velocity is found to be about 5% onaverage. The systematic shift with respect to standard values fromSlettebak et al. (\cite{Slk_75}), previously found in the first paper,is here confirmed. Comparisons with data from the literature agree withour findings: v sin i values from Slettebak et al. are underestimatedand the relation between both scales follows a linear law ensuremath vsin inew = 1.03 v sin iold+7.7. Finally, thesedata are combined with those from the previous paper (Royer et al.\cite{Ror_02a}), together with the catalogue of Abt & Morrell(\cite{AbtMol95}). The resulting sample includes some 2150 stars withhomogenized rotational velocities. Based on observations made atObservatoire de Haute Provence (CNRS), France. Tables \ref{results} and\ref{merging} are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.125.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/393/897

On the nature of the AM phenomenon or on a stabilization and the tidal mixing in binaries. II. Metallicity and pseudo-synchronization.
We reveal sufficient evidences that for Am binaries the metallicitymight depend on their orbital periods, P_orb_, rather than on vsini. Inparticular, δm_1_ index seems to decrease with increasing orbitalperiod up to at least P_orb_=~50d, probably even up to P_orb_=~200d.This gives further support to our "tidal mixing + stabilization"hypothesis formulated in Part I. Moreover, while the most metallic Amstars seem to have rather large periods the slowest rotators are foundto exhibit substantially shorter P_orb_. A questioning eye is thus caston the generally adopted view that Am peculiarity is caused by asuppressed rotationally induced mixing in slowly rotating `single'stars. The observed anticorrelation between rotation and metallicity mayhave also other than the `textbook' explanation, namely being the resultof the correlation between metallicity and orbital period, as themajority of Am binaries are possibly synchronized. We further argue thatthere is a tendency in Am binaries towards pseudo-synchronization up toP_orb_=~35d. This has, however, no serious impact on our conclusionsfrom Part I; on the contrary, they still hold even if this effect istaken into account.

On the nature of the AM phenomenon or on a stabilization and the tidal mixing in binaries. I. Orbital periods and rotation.
The paper casts a questioning eye on the unique role of the diffusiveparticle transport mechanism in explaining the Am phenomenon and arguesthat the so-called tidal effects might be of great importance incontrolling diffusion processes. A short period cutoff at =~1.2d as wellas a 180-800d gap were found in the orbital period distribution (OPD) ofAm binaries. The existence of the former can be ascribed to the state ofthe primaries with the almost-filled Roche lobes. The latter couldresult from the combined effects of the diffusion, tidal mixing andstabilization processes. Because the tidal mixing might surpassdiffusion in the binaries with the orbital periods P_orb_ less thanseveral hundred days and might thus sustain the He convection zone,which would otherwise disappear, no Am stars should lie below thisboundary. The fact that they are nevertheless seen there implies theexistence of some stabilization mechanism (as, e.g., that recentlyproposed by Tassoul & Tassoul 1992) for the binaries with orbitalperiods less than 180d. Further evidence is given to the fact that theOPD for the Am and the normal binaries with an A4-F1 primary arecomplementary to each other, from which it stems that Am stars are closeto the main sequence. There are, however, indications that they haveslightly larger radii (2.1-3 Rsun_) than expected for theirspectral type. The generally accepted rotational velocity cutoff at=~100km/s is shown to be of little value when applied on Am binaries ashere it is not a single quantity but, in fact, a function of P_orb_whose shape is strikingly similar to that of the curves of constantmetallicity as ascertained from observations. This also leads to thewell known overlap in rotational velocities of the normal and Am starsfor 402.5d.We have exploited this empirical cutoff function to calibrate thecorresponding turbulent diffusion coefficient associated with tidalmixing, having found out that the computed form of the lines of constantturbulence fits qualitatively the empirical shape of the curves ofconstant metallicity. As for larger orbital periods(20d55km/s found by Burkhart(1979) would then be nothing but a manifestation of insufficientlypopulated corresponding area of larger P_orb_.

The Relation between Rotational Velocities and Spectral Peculiarities among A-Type Stars
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995ApJS...99..135A&db_key=AST

Reality Tests of Superclusters in the Young Disk Population
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995AJ....110.2862E&db_key=AST

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

Third preliminary catalogue of stars observed with the photoelectric astrolabe of the Beijing Astronomical Observatory.
Not Available

Binary stars unresolved by speckle interferometry. III
The KPNO's 4-m telescope was used in 1975-1981 to determine the epochsof 1164 speckle observations for 469 unresolved, known or suspectedbinary stars. The data, presented in tabular form, encompass visualbinaries with eccentric orbits, occultation binaries, astrometricbinaries, Hyades stars of known or suspected duplicity, and many longperiod spectroscopic binaries.

The period distribution of unevolved close binary systems
Period distributions have been examined for various spectral types ofabout 600 (eclipsing and spectroscopic) close binaries, which are likelyto be substantially unevolved. The comparison with the previouscorresponding analyses of extensive (but heterogeneous) binary samplesallows a clarification of the extent of the evolutionary andobservational selection effects. Remarkably, this analysis reveals agreat deficiency of short period binaries (with periods corresponding tocase A mass transfer) in the whole spectral range. For the late spectraltypes, this result may be connected with postformation angular momentumloss caused by stellar wind magnetic braking; at least for the late Band A spectral range, a ready interpretation of this finding is thatclose binaries of corresponding periods and spectral types are rarelyformed.

Spectroscopic binaries - 14th complementary catalog
Orbital-element data for 380 spectroscopic binaries are compiled andannotated in tables. The catalog represents a continuation of the 13thcatalog (Pedoussaut and Nadal, 1977) and uses the same general format.The techniques used in making the magnitudes and spectral typeshomogeneous are indicated.

Lists of photometric AM candidates
The Geneva photometric m parameter (Nicolet and Cramer, 1982) is used inorder to select Am photometric candidates from the Rufener (1981)catalogue. Two lists are given, the first containing field stars and thesecond cluster stars. According to the photometric criteria thediffusion process probably responsible for the Am phenomenon takes placerather quickly as Am candidates are present in young clusters. It isconfirmed that the phenomenon is enhanced by low rotational velocity andhigh metallicity. The age seems to slightly affect the Am phenomenon.

The absolute magnitude of the AM stars
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1981A&A....93..155G&db_key=AST

Properties of AM stars in the Geneva photometric system
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1980A&A....92..289H&db_key=AST

The rotational velocity effect on the main sequence AM stars metallicity
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1979A&A....74...38B&db_key=AST

Seventh catalogue of the orbital elements of spectroscopic binary systems.
Not Available

Binary stars unresolved by speckle interferometry
The epochs of 372 speckle observations obtained with the 4-m Mayalltelescope at KPNO during 1975-77 are given for 156 unresolved visual,astrometric, spectrum, occultation, and spectroscopic binary stars.Specified thresholds are set for detectible angular separations andmagnitude differences so that the negative observations presented herecan be used to place constraints on orbital parameters.

Metallicism and pulsation - The marginal metallic line stars
Evidence is presented that HR 4594 and HR 8210 are pulsating marginal Amstars. It is suggested that (1) classical Am stars do not pulsate, (2)evolved Am stars may pulsate, and (3) marginal Am stars may pulsate. Itis further suggested that, within the Am domain, temperature, age,rotation, and pulsation are sufficient to determine whether a star willbe Am, marginal Am, or spectrally normal.

UBVRI photometry of 225 AM stars
UBVRI photometry of 225 Am stars taken from Mendoza's (1974) catalog ispresented. The results are compared with those obtained by Feinstein(1974) for 21 of the stars and with the values of Johnson et al. (1966).It is assumed that in the first approximation the (V-I) color index ofan unreddened Am star is equal to that of a normal main-sequence star; astandard main sequence is defined for A and early F stars, and thefive-color photometry is analyzed by means of plots of U-V vs. V-I, B-Vvs. V-I, and V-R vs. V-I. Mean color deficiencies of Am stars areexamined, and it is suggested that an unreddened star located below themain-sequence A0-F2 line in the (V-I, U-V) plane is a photometric Amstar. It is concluded that: (1) photometric Am stars have colordeficiencies (as a function of V-I) which, on the average, are 0.07 magin (U-V) color index and 0.025 mag in (B-V) color index; (2) Am starswith V-R less than 0.25 mag may also have a color deficiency of about0.01 mag; (3) Am stars with V-R greater than 0.3 mag may have a colorexcess of approximately 0.01 mag; and (4) Am stars with V-R between 0.25and 0.3 mag may have normal colors.

Vitesses radiales et largeurs equivalentes de la binaire a doubles raies HR 2172.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1977A&AS...27...31C&db_key=AST

Bright metallic-line and pulsating A stars.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1976PASP...88..402E&db_key=AST

A new double-lined spectroscopic binary HR 2172.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1976A&A....50..213V&db_key=AST

Rotational velocities of marginal metallic-line stars.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1975ApJ...195..405A&db_key=AST

Multicolor photometry of metallic-line stars. III. A photometric catalogue
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1974RMxAA...1..175M&db_key=AST

Catalogue of AM stars with known spectral types
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1973A&AS...10..385H&db_key=AST

Classification des spectres de 112 d'étoiles A et F dont 89 d'étoiles AM
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1970A&AS....1....7B&db_key=AST

Slit Spectra of Some Peculiar and Metallic-Line A Stars
Not Available

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Cocher
Right ascension:06h11m46.00s
Declination:+52°38'50.0"
Apparent magnitude:6.3
Distance:100.301 parsecs
Proper motion RA:1.8
Proper motion Dec:-71.2
B-T magnitude:6.463
V-T magnitude:6.289

Catalogs and designations:
Proper Names
HD 1989HD 42083
TYCHO-2 2000TYC 3751-392-1
USNO-A2.0USNO-A2 1425-06466798
BSC 1991HR 2172
HIPHIP 29404

→ Request more catalogs and designations from VizieR