Home     Getting Started     New Pictures     Picture of the Day     Blog New!     Login  

HD 190864


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

A census of the Wolf-Rayet content in Westerlund 1 from near-infrared imaging and spectroscopy
New Technology Telescope (NTT)/Son of Isaac (SOFI) imaging andspectroscopy of the Wolf-Rayet population in the massive clusterWesterlund 1 are presented. Narrow-band near-infrared (IR) imagingtogether with follow up spectroscopy reveals four new Wolf-Rayet stars,of which three were independently identified recently by Groh et al.,bringing the confirmed Wolf-Rayet content to 24 (23 excluding source S)- representing 8 per cent of the known Galactic Wolf-Rayet population -comprising eight WC stars and 16 (15) WN stars. Revised coordinates andnear-IR photometry are presented, whilst a quantitative near-IR spectralclassification scheme for Wolf-Rayet stars is presented and applied tomembers of Westerlund 1. Late subtypes are dominant, with no subtypesearlier than WN5 or WC8 for the nitrogen and carbon sequences,respectively. A qualitative inspection of the WN stars suggests thatmost (~75 per cent) are highly H deficient. The Wolf-Rayet binaryfraction is high (>=62 per cent), on the basis of dust emission fromWC stars, in addition to a significant WN binary fraction from hardX-ray detections according to Clark et al. We exploit the large WNpopulation of Westerlund 1 to reassess its distance (~5.0kpc) andextinction (AKS ~ 0.96mag), such that it islocated at the edge of the Galactic bar, with an oxygen metallicity ~60per cent higher than Orion. The observed ratio of WR stars to red andyellow hypergiants, N(WR)/N(RSG + YHG) ~3, favours an age of~4.5-5.0Myr, with individual Wolf-Rayet stars descended from progenitorsof initial mass ~40-55Msolar. Qualitative estimates ofcurrent masses for non-dusty, H-free WR stars are presented, revealing10-18Msolar, such that ~75 per cent of the initial stellarmass has been removed via stellar winds or close binary evolution. Wepresent a revision to the cluster turn-off mass for other Milky Wayclusters in which Wolf-Rayet stars are known, based upon the latesttemperature calibration for OB stars. Finally, comparisons between theobserved WR population and subtype distribution in Westerlund 1 andinstantaneous burst evolutionary synthesis models are presented.Based on observations made with ESO telescopes at the La SillaObservatory under programme IDs 073.D-0321 and 075.D-0469.E-mail: Paul.crowther@sheffield.ac.uk

An Extended FUSE Survey of Diffuse O VI Emission in the Interstellar Medium
We present a survey of diffuse O VI emission in the interstellar medium(ISM) obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE).Spanning 5.5 yr of FUSE observations, from launch through 2004 December,our data set consists of 2925 exposures along 183 sight lines, includingall of those with previously published O VI detections. The data wereprocessed using an implementation of CalFUSE version 3.1 modified tooptimize the signal-to-noise ratio and velocity scale of spectra from anaperture-filling source. Of our 183 sight lines, 73 show O VIλ1032 emission, 29 at >3 σ significance. Six of the 3σ features have velocities |vLSR|>120 kms-1, while the others have |vLSR|<=50 kms-1. Measured intensities range from 1800 to 9100 LU (lineunit; 1 photon cm-2 s-1 sr-1), with amedian of 3300 LU. Combining our results with published O VI absorptiondata, we find that an O VI-bearing interface in the local ISM yields anelectron density ne=0.2-0.3 cm-3 and a path lengthof 0.1 pc, while O VI-emitting regions associated with high-velocityclouds in the Galactic halo have densities an order of magnitude lowerand path lengths 2 orders of magnitude longer. Although the O VIintensities along these sight lines are similar, the emission isproduced by gas with very different properties.Based on observations made with the NASA-CNES-CSA Far UltravioletSpectroscopic Explorer. FUSE is operated for NASA by Johns HopkinsUniversity under NASA contract NAS5-32985.

The Discordance of Mass-Loss Estimates for Galactic O-Type Stars
We have determined accurate values of the product of the mass-loss rateand the ion fraction of P+4, M˙q(P+4), for asample of 40 Galactic O-type stars by fitting stellar wind profiles toobservations of the P V resonance doublet obtained with FUSE, ORFEUSBEFS, and Copernicus. When P+4 is the dominant ion in thewind [i.e., 0.5<~q(P+4)<=1], M˙q(P+4)approximates the mass-loss rate to within a factor of <~2. Theorypredicts that P+4 is the dominant ion in the winds of O7-O9.7stars, although an empirical estimator suggests that the range O4-O7 maybe more appropriate. However, we find that the mass-loss rates obtainedfrom P V wind profiles are systematically smaller than those obtainedfrom fits to Hα emission profiles or radio free-free emission bymedian factors of ~130 (if P+4 is dominant between O7 andO9.7) or ~20 (if P+4 is dominant between O4 and O7). Thesediscordant measurements can be reconciled if the winds of O stars in therelevant temperature range are strongly clumped on small spatial scales.We use a simplified two-component model to investigate the volumefilling factors of the denser regions. This clumping implies thatmass-loss rates determined from ``ρ2'' diagnostics havebeen systematically overestimated by factors of 10 or more, at least fora subset of O stars. Reductions in the mass-loss rates of this size haveimportant implications for the evolution of massive stars andquantitative estimates of the feedback that hot-star winds provide totheir interstellar environments.

A Medium Resolution Near-Infrared Spectral Atlas of O and Early-B Stars
We present intermediate-resolution (R~8000-12,000) high signal-to-noise(S/N) H- and K-band spectroscopy of a sample of 37 optically visiblestars, ranging in spectral type from O3 to B3 and representing mostluminosity classes. Spectra of this quality can be used to constrain thetemperature, luminosity, and general wind properties of OB stars, whenused in conjunction with sophisticated atmospheric model codes. Mostimportant is the need for moderately high resolutions (R>=5000) andvery high signal-to-noise (S/N>=150) spectra for a meaningful profileanalysis. When using near-infrared spectra for a classification system,moderately high signal-to-noise (S/N~100) is still required, though theresolution can be relaxed to just a thousand or two. In the Appendix weprovide a set of very high-quality near-infrared spectra of Brackettlines in six early-A dwarfs. These can be used to aid in the modelingand removal of such lines when early-A dwarfs are used for telluricspectroscopic standards.

Quantitative H and K band spectroscopy of Galactic OB-stars at medium resolution
In this paper we have analyzed 25 Galactic O and early B-stars by meansof H and K band spectroscopy, with the primary goal to investigate towhat extent a lone near-IR spectroscopy is able to recover stellar andwind parameters derived in the optical. Most of the spectra have beentaken with subaru-ircs, at an intermediate resolution of 12 000, andwith a very high S/N, mostly on the order of 200 or better. In order tosynthesize the strategic H/He lines, we have used our recent,line-blanketed version of fastwind (Puls et al. 2005, A&A, 435,669). In total, seven lines have been investigated, where for two starswe could make additional use of the Hei2.05 singlet which has beenobserved with irtf-cshell. Apart from Brγ and Heii2.18, the otherlines are predominately formed in the stellar photosphere, and thusremain fairly uncontaminated from more complex physical processes,particularly clumping. First we investigated the predicted behaviour ofthe strategic lines. In contradiction to what one expects from theoptical in the O-star regime, almost all photospheric H/Hei/Heii H/Kband lines become stronger if the gravity decreases. Concerning H andHeii, this finding is related to the behaviour of Stark broadening as afunction of electron density, which in the line cores is different formembers of lower (optical) and higher (IR) series. Regarding Hei, thepredicted behaviour is due to some subtle NLTE effects resulting in astronger overpopulation of the lower level when the gravity decreases.We have compared our calculations with results from the alternative NLTEmodel atmosphere code cmfgen (Hillier & Miller 1998, ApJ, 496, 407).In most cases, we found reasonable or nearly perfect agreement. Only theHei2.05 singlet for mid O-types suffers from some discrepancy, analogouswith findings for the optical Hei singlets. For most of our objects, weobtained good fits, except for the line cores of Brγ in earlyO-stars with significant mass-loss. Whereas the observations showBrγ mostly as rather symmetric emission lines, the models predicta P Cygni type profile with strong absorption. This discrepancy (whichalso appears in lines synthesized by cmfgen) might be an indirect effectof clumping. After having derived the stellar and wind parameters fromthe IR, we have compared them to results from previous optical analyses.Overall, the IR results coincide in most cases with the optical oneswithin the typical errors usually quoted for the correspondingparameters, i.e., an uncertainty in T_eff of 5%, in log g of 0.1 dex andin {dot M} of 0.2 dex, with lower errors at higher wind densities.Outliers above the 1-σ level where found in four cases withrespect to log g and in two cases for {dot M}.

On the Hipparcos parallaxes of O stars
We compare the absolute visual magnitude of the majority of bright Ostars in the sky as predicted from their spectral type with the absolutemagnitude calculated from their apparent magnitude and the Hipparcosparallax. We find that many stars appear to be much fainter thanexpected, up to five magnitudes. We find no evidence for a correlationbetween magnitude differences and the stellar rotational velocity assuggested for OB stars by Lamers et al. (1997, A&A, 325, L25), whosesmall sample of stars is partly included in ours. Instead, by means of asimulation we show how these differences arise naturally from the largedistances at which O stars are located, and the level of precision ofthe parallax measurements achieved by Hipparcos. Straightforwardlyderiving a distance from the Hipparcos parallax yields reliable resultsfor one or two O stars only. We discuss several types of bias reportedin the literature in connection with parallax samples (Lutz-Kelker,Malmquist) and investigate how they affect the O star sample. Inaddition, we test three absolute magnitude calibrations from theliterature (Schmidt-Kaler et al. 1982, Landolt-Börnstein; Howarth& Prinja 1989, ApJS, 69, 527; Vacca et al. 1996, ApJ, 460, 914) andfind that they are consistent with the Hipparcos measurements. AlthoughO stars conform nicely to the simulation, we notice that some B stars inthe sample of \citeauthor{La97} have a magnitude difference larger thanexpected.

NLTE models of line-driven stellar winds. I. Method of calculation and first results for O stars
New numerical models of line-driven stellar winds of late O stars arepresented. Statistical equilibrium (NLTE) equations of the most abundantelements are solved. Properly obtained occupation numbers are used tocalculate consistent radiative force and radiative heating terms. Winddensity, velocity and temperature are calculated as a solution of modelhydrodynamical equations. Contrary to other published models we accountfor a multicomponent wind nature and do not simplify the calculation ofthe radiative force (e.g. using force multipliers). We discuss theconvergence behaviour of our models. The ability of our models topredict correct values of mass-loss rates and terminal velocities ofselected late O stars (mainly giants and supergiants) is demonstrated.The systematic difference between predicted and observed terminalvelocities reported in the literature has been removed. Moreover, wefound good agreement between the theoretical wind momentum-luminosityrelationship and the observed one for Cyg OB2 supergiants.Appendices A, B and C are only available in electronic form athttp://www.edpsciences.org

A Galactic O Star Catalog
We have produced a catalog of 378 Galactic O stars with accuratespectral classifications that is complete for V<8 but includes manyfainter stars. The catalog provides cross-identifications with othersources; coordinates (obtained in most cases from Tycho-2 data);astrometric distances for 24 of the nearest stars; optical (Tycho-2,Johnson, and Strömgren) and NIR photometry; group membership,runaway character, and multiplicity information; and a Web-based versionwith links to on-line services.

Stellar and wind parameters of Galactic O-stars. The influence of line-blocking/blanketing
We have re-analyzed the Galactic O-star sample from \citet{puls96} bymeans of line-blanketed NLTE model atmospheres in order to investigatethe influence of line-blocking/blanketing on the derived parameters. Theanalysis has been carried out by fitting the photospheric and wind linesfrom H and He. In most cases we obtained a good fit, but we have alsofound certain inconsistencies which are probably related to a stillinadequate treatment of the wind structure. These inconsistenciescomprise the line cores of Hγ and Hβ insupergiants (the synthetic profiles are too weak when the mass-loss rateis determined by matching Hα) and the ``generalizeddilution effect'' (cf. \citealt{vo89}) which is still present in He I4471 of cooler supergiants and giants.Compared to pure H/He plane-parallel models we found a decrease ineffective temperatures which is largest at earliest spectral types andfor supergiants (with a maximum shift of roughly 8000 K). This findingis explained by the fact that line-blanketed models of hot stars havephotospheric He ionization fractions similar to those from unblanketedmodels at higher Teff and higher log g. Consequently, anyline-blanketed analysis based on the He ionization equilibrium resultsin lower Teff-values along with a reduction of either log gor helium abundance (if the reduction of log g is prohibited by theBalmer line wings). Stellar radii and mass-loss rates, on the otherhand, remain more or less unaffected by line-blanketing.We have calculated ``new'' spectroscopic masses and compared them withprevious results. Although the former mass discrepancy \citep{h92}becomes significantly reduced, a systematic trend for masses below 50Msun seems to remain: The spectroscopically derived valuesare smaller than the ``evolutionary masses'' by roughly 10Msun. Additionally, a significant fraction of our samplestars stays over-abundant in He, although the actual values were foundto be lower than previously determined.Also the wind-momentum luminosity relation (WLR) changes because oflower luminosities and almost unmodified wind-momentum rates. Comparedto previous results, the separation of the WLR as a function ofluminosity class is still present but now the WLR for giants/dwarfs isconsistent with theoretical predictions.We argue that the derived mass-loss rates of stars withHα in emission are affected by clumping in the lowerwind region. If the predictions from different and independenttheoretical simulations (\citealt {Vink00, Paul03, puls03a}) that theWLR should be independent of luminosity class were correct, a typicalclumping factor <ρ2>/<ρ>2 ≈5 should be derived by ``unifying'' the different WLRs.Based upon observations obtained at the INT and the European SouthernObservatory, La Silla, Chile. The INT is operated on the island of LaPalma by the ING in the Spanish Observatorio de El Roque de losMuchachos of the Instituto de Astrofísica de Canarias.Appendix A in only available in electronic form athttp://www.edpsciences.org

A study of RV in Galactic O stars from the 2MASS catalogue
We present new measurements of the interstellar reddening parameterRV=AV/E(B-V) towards 185 O stars, using J, H,Ks photometry from the 2MASS project. The results arecombined with data from the literature of 95 stars where RVhas been derived with the same technique, 22 of which in common with ourpresent sample from the 2MASS project catalogue. The averageRV from these 258 O stars is of 3.19 +/- 0.50. All objectswhose RV departs from this value by more than 2 sigma havebeen recognized. Ten objects have RV higher than this valueand two lower. It is found that anomalous RV can scarcely beassociated with anomalies in the general interstellar medium, e.g. withdifferent behaviour in different spiral arms. They are clearly linked tolocal cloud effect. In the Cygnus region RV values follow thebehaviour of the general interstellar medium, while in the Carina arm,in spite of the relatively larger distance, local cloud effects prevail.An explanation for this is suggested. The relatively few stars of oursample whose Hipparcos parallaxes are reliable, are found to havedistances systematically smaller than the distances derived by thespectroscopic parallaxes. We argue that this effect is consistent withthe recently claimed discovery of grey extinction towards OB stars.This publication makes use of data products from the Two Micron All SkySurvey (2MASS), which is a joint project of the University ofMassachusetts and the Infrared Processing and Analysis Center/CaliforniaInstitute of Technology, funded by the National Aeronautics and SpaceAdministration and the National Science Foundation.Tables 1 and 2 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/410/905

On the Absolute Magnitudes of the O Stars
The conclusion published in 1992 by Garmany & Stencel from a studyof northern OB associations, that the absolute magnitudes of the O starsshow ``a large scatter ... intrinsic to the classification system,'' iscritically examined. It is found that the differences between theirderived absolute magnitudes of O stars and this author's 1973calibration exhibit large systematic effects in several associations,ranging from -0.74 to +1.02 mag with substantially smaller dispersions.Of course, when these results are combined, the scatter equals the fullrange of the systematic effects. To investigate the possibility ofdistance errors, the Garmany & Stencel B0-B2.5 stars in the sameassociations are subjected to the same analysis. The results for the Bstars show no significant systematic differences, eliminating errors inthe association distances derived by Garmany & Stencel from the Bstars as the source of the differences found for the O stars. It isnoteworthy that the dispersions in the absolute magnitudes of the Bstars within a given association are similar to or larger than those ofthe O stars. An examination of the distribution on the sky of the starsshows that the O and B stars in the discrepant associations aregenerally not colocated; such was already known to be the case for theimportant Perseus OB1 association. It is suggested that despite theirefforts to improve them, significant problems remain with theassociation memberships adopted by Garmany & Stencel; the relativelysmall dispersions of the O star absolute magnitudes even in thediscrepant cases indicate that they belong to different, usually moredistant associations near the lines of sight to the B associations withwhich they have been mistakenly connected. Several individual cases ofunrecognized multiple systems and classification errors are also foundin the Garmany & Stencel sample. It is concluded that the scatter inthe absolute magnitudes of the O stars is not as large as found byGarmany & Stencel, and not larger than that of the B stars.

The massive double-lined O-type binary HD 165052
We present a new optical spectroscopic study of the O-type binary HD165052 based on high- and intermediate-resolution CCD observations. Were-investigated the spectral classification of the binary components,obtaining spectral types of O6.5V and O7.5V for the primary andsecondary, respectively, finding that both stars display weakCIIIλ5696 emission in their spectra. We also determined aradial-velocity orbit for HD 165052 with a period of 2.95510+/-0.00001d,and semi-amplitudes of 94.8 and 104.7+/-0.5kms-1, resultingin a mass ratio Q=0.9. From a comparison with previous radial-velocitydeterminations, we found evidence of apsidal motion in the system.Several signatures of wind-wind collision, such as phase-lockedvariability of the X-ray flux and the Struve-Sahade effect, are alsoconsidered. It was also found that the reddening in the region should benormal, in contrast with previous determinations.

Investigation of the Magellanic eclipsing binary HV 2241
We present a CCD V light curve of HV 2241, togetherwith some observations in the B band. We analysed our photometric datajointly with previously published radial velocities by means of theWilson-Devinney code, and derived new values for the physical parametersof this massive eclipsing binary system. We confirm that this system issemi-detached, with the secondary (less massive and less luminouscomponent) filling its Roche-lobe. From our analysis, we estimate thefollowing masses and radii for the components of HV 2241: M1=36.2 +/- 0.7 Msun, R1=14.9 +/- 0.4Rsun, M2=18.4 +/- 0.7 {M}sun andR_2=13.7 +/- 0.4 Rsun. We review the spectral classificationanalysing HST and IUE data and discuss the temperature and the reddeningfor this star.

Multicomponent radiatively driven stellar winds. II. Gayley-Owocki heating in multitemperature winds of OB stars
We show that the so-called Gayley-Owocki (Doppler) heating is importantfor the temperature structure of the wind of main sequence stars coolerthan the spectral type O6. The formula for Gayley-Owocki heating isderived directly from the Boltzmann equation as a direct consequence ofthe dependence of the driving force on the velocity gradient. SinceGayley-Owocki heating deposits heat directly on the absorbing ions, wealso investigated the possibility that individual components of theradiatively driven stellar wind have different temperatures. This effectis negligible in the wind of O stars, whereas a significant temperaturedifference takes place in the winds of main sequence B stars for starscooler than B2. Typical temperature differences between absorbing ionsand other flow components for such stars is of the order 103K. However, in the case when the passive component falls back onto thestar, the absorbing component reaches temperatures of order106 K, which allows for emission of X-rays. Moreover, wecompare our computed terminal velocities with the observed ones. Wefound quite good agreement between predicted and observed terminalvelocities. The systematic difference coming from the using of the socalled ``cooking formula'' has been removed.

Multiperiodicity and physical nature of the δ Sct star GSC 2683-3076
We present the results of a CCD Johnson V and photoelectricStrömgren uvbyβ photometric study of the recently discoveredmultiperiodic δ Sct star GSC 2683-3076. Our data set mainlyconsists of 2874 differential measurements in V together with a few datacollected into the uvbyβ system. Additional unfiltered CCDmeasurements were also carried out. A set of seven best-fittingpulsation frequencies representing the light variations of the variablehas been detected. The spectral type of the variable is found to be A9Vor F0V. Using the uvbyβ indices the following main physicalparameters for the variable have been derived: Teff=7230K,MV=1.95mag, logg=3.90, M=1.85Msolar,R=2.30Rsolar, ρ=0.16ρsolar, age=1.0Gyr,metal abundance [Me/H]=0.16 and distance modulus=8.4mag. GSC 2683-3076is found to be a Population I δ Sct star, slightly metal-enriched,evolving on its main-sequence stage. A mixture of radial and non-radialmodes seems to be present in the pulsation of this variable. This staris also known as H133 in the young open cluster NGC 6871, howeverarguments are given that address this star as a non-member of thecluster. The uvbyβ photometry available in the literature for NGC6871 is also discussed.

Determination of R_V towards galactic O stars
We present new measurements of the interstellar reddening parameterRV=AV/E(B-V) towards 35 O stars. The results arecombined with measurements from the literature for 60 stars to study thebehaviour of RV with heliocentric distance. RV isthe single basic parameter which characterizes the interstellarextinction from the near-infrared to the far-UV spectral region. Theabsolute extinction AV, from which RV is derived,is best determined by optical and near-infrared photometry (Cardelli etal. \cite{r3}). We consider important the derivation of RVwith the same technique in the direction of as many as possible galacticO stars.

The X-Ray Photoionized Wind in Cen X-3/V779 Cen
We analyze the ASCA spectrum of the Cen X-3 X-ray binary system ineclipse using atomic models appropriate to recombination-dominated levelpopulation kinetics in an overionized plasma. In order to estimate thewind characteristics, we first fit the eclipse spectrum to a single-zonephotoionized plasma model. We then fit spectra from a range of orbitalphases using global models of photoionized winds from the companion starand the accretion disk that account for the continuous distribution ofdensity and ionization state. We find that the spectrum can bereproduced by a density distribution of the form derived by Castor etal. (1975) for radiation-driven winds with M/v∞consistent with values for isolated stars of the same stellar type. Thisis surprising because the neutron star is very luminous(~1038 ergs s-1) and the X-rays from the neutronstar should ionize the wind and destroy the ions that provide theopacity for the radiation-driven wind. Using the same functional formfor the density profile, we also fit the spectrum to a sphericallysymmetric wind centered on the neutron star, a configuration chosen torepresent a disk wind. We argue that the relatively modest orbitalvariation of the discrete spectrum rules out a disk wind hypothesis.

Catalogue of Apparent Diameters and Absolute Radii of Stars (CADARS) - Third edition - Comments and statistics
The Catalogue, available at the Centre de Données Stellaires deStrasbourg, consists of 13 573 records concerning the results obtainedfrom different methods for 7778 stars, reported in the literature. Thefollowing data are listed for each star: identifications, apparentmagnitude, spectral type, apparent diameter in arcsec, absolute radiusin solar units, method of determination, reference, remarks. Commentsand statistics obtained from CADARS are given. The Catalogue isavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcar?J/A+A/367/521

Absolute proper motions of open clusters. I. Observational data
Mean proper motions and parallaxes of 205 open clusters were determinedfrom their member stars found in the Hipparcos Catalogue. 360 clusterswere searched for possible members, excluding nearby clusters withdistances D < 200 pc. Members were selected using ground basedinformation (photometry, radial velocity, proper motion, distance fromthe cluster centre) and information provided by Hipparcos (propermotion, parallax). Altogether 630 certain and 100 possible members werefound. A comparison of the Hipparcos parallaxes with photometricdistances of open clusters shows good agreement. The Hipparcos dataconfirm or reject the membership of several Cepheids in the studiedclusters. Tables 1 and 2 are only available in electronic form at theCDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

HST/FOS Spatially Resolved Spectral Classification of Compact OB Groups in the Large Magellanic Cloud
Blue-violet spectrograms of individual components in four compact OBgroups of the Large Magellanic Cloud, obtained with the Hubble SpaceTelescope (HST) Faint Object Spectrograph (FOS), are presented anddiscussed. Two of the massive multiple systems are in the 30 Doradusperiphery, while the other two represent the core and the peripheral,triggered associations in the giant shell H II region Henize N11.Uncontaminated spectrograms of three Wolf-Rayet and two very early Ofcomponents have been obtained for the first time; they can be observedonly as composites with their close companions from the ground. Many ofthe companions have also been observed separately with the HST FOS, andseveral are of special interest in their own right. These observationsprovide information on the initial masses and ages of the peculiarobjects, and on the evolutionary relationships among different spectralcategories within the presumably coeval systems.

High resolution spectroscopy over lambda lambda 8500-8750 Å for GAIA. I. Mapping the MKK classification system
We present an Echelle+CCD high resolution spectroscopic atlas (0.25Ä/pix dispersion, 0.43 Ä FWHM resolution and 20 000 resolvingpower) mapping the MKK classification system over the interval lambdalambda 8500-8750 Ä. The wavelength interval is remarkably free fromtelluric lines and it is centered on the near-IR triplet of Ca II, thehead of hydrogen Paschen series and several strong metallic lines. Thespectra of 131 stars of types between O4 and M8 and luminosity classes Ithrough V are included in the atlas. Special care was put in maintainingthe highest instrumental homogeneity over the whole set of data. Thecapability to derive accurate MKK spectral types from high resolutionobservations over the interval lambda lambda 8500-8750 Ä isdiscussed. The observations have been performed as part of an evaluationstudy of possible spectroscopic performances for the astrometric missionGAIA planned by ESA. Tables~3 and 4 are only available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)or via http://cdsweb.u-strasbg.fr/ Abstract.html}\fnmsep\thanks{ Thespectra of the stars listed in Table~2 are also available in electronicform at the CDS or via the personal HomePagehttp://ulisse.pd.astro.it/Astro/Atlases/}\fnmsep\thanks{ Figures 3--28are only available in electronic form at http://www.edpsciences.com

The Ionization in the Winds of O Stars and the Determination of Mass-Loss Rates from Ultraviolet Lines
Empirical ionization fractions of C IV, N V, Si IV, and empiricalionization plus excitation fractions of C III* and N iv^* in the windsof 34 O stars and one B star have been derived. We combine the mass-lossrates derived from radio measurements and Hα with the line fittingof ultraviolet resonance lines and subordinate lines using the Sobolevplus exact integration (SEI) method. The dependence of the empiricalionization fractions, q, on the stellar effective temperature and on themean wind density is discussed. This sets constraints for the models ofionization in the winds of hot stars. The ionization and excitationfractions can be expressed in terms of an empirical radiationtemperature. This radiation temperature scales with T_eff, and we deriveempirical relations for T_rad as a function of T_eff. The radiationtemperatures are on the order of 0.5-0.9 T_eff, with significantdifferences between the ions. The derived relations between theionization fractions and the stellar parameters have an uncertainty of0.2 dex forSi IV, N V, and C iii^*, and about 0.26 dex for N iv^*. For CIV, we can only derive an expression for the mean ionization fraction inthe wind if the mass-loss rate is small, M<10^-6 M_solar yr^-1,because the C IV lines are usually saturated for higher mass-loss rates.The resulting expressions for T_rad can be used to derive the mass-lossrates from studies of ultraviolet P Cygni profiles in the range ofstellar parameters studied here: 30,000 K<~T_eff<~50,500 K,5.2<~logL/L_*<~6.4, and -7.5 M_solar<~logM<~-4.6 M_solaryr^-1. An accuracy of about a factor of 2 or better can be reached,depending on the lines that are used and the accuracy of the line fitsand the stellar parameters. The Si IV lines give the most reliablemass-loss rates, because the abundance is about the same for all Ostars, the lines saturate only for high mass-loss rates, the doubletlines only partly overlap, and the mass-loss rate is proportional to thesquare root of the column density. The radiation temperature of N Vshows a surprisingly strict relation with T_eff, with a scatter of onlyDeltaT_rad/T_eff=0.01. The mass-loss rate cannot be derived from the N Vlines, because the column density of the N V ions in the wind isindependent of M. A consistency check and a test of the method for thestars HD 14749 and HD 190429 show that the mass-loss rate derived fromthe UV lines with the ionization fractions of this paper agree very wellwith the mass-loss rate derived from new radio flux measurements.

1-m spectroscopy of normal OB stars
We have obtained spectra of 70 normal OB stars in the near-IR I(1-μm) band. The strongest features are those due to lines of thehydrogen Paschen series and neutral and ionized helium, which are, forthe most part, in absorption. The information content in this spectralrange is sufficient for only a rough classification of hot stars into`early O', `late O' and `B' types. Curiously, the leading He i tripletline, He i λ1.0830 μm, is usually not detectable, although ina few stars it is in emission; its behaviour generally correlates withthe leading helium singlet line, He i λ 2.058 μ m. These twofeatures appear to be present in emission only in stars with extremes ofmass loss or wind extension.

UBV beta Database for Case-Hamburg Northern and Southern Luminous Stars
A database of photoelectric UBV beta photometry for stars listed in theCase-Hamburg northern and southern Milky Way luminous stars surveys hasbeen compiled from the original research literature. Consisting of over16,000 observations of some 7300 stars from over 500 sources, thisdatabase constitutes the most complete compilation of such photometryavailable for intrinsically luminous stars around the Galactic plane.Over 5000 stars listed in the Case-Hamburg surveys still lackfundamental photometric data.

ICCD speckle observations of binary stars. XIX - an astrometric/spectroscopic survey of O stars
We present the results of a speckle interferometric survey made with theCHARA speckle camera and 4 m class telescopes of Galactic O-type starswith V less than 8. We can detect with the speckle camera binaries inthe angular separation range 0.035-1.5 arcsec with delta M less than 3,and we have discovered 15 binaries among 227 O-type systems. We combinedour results on visual binaries with measurements of wider pairs from theWashington Double Star Catalog and fainter pairs from the HipparcosCatalog, and we made a literature survey of the spectroscopic binariesamong the sample. We then investigated the overall binary frequency ofthe sample and the orbital characteristics of the known binaries.Binaries are common among O stars in clusters and associations but lessso among field and especially runaway stars. There are many triplesystems among the speckle binaries, and we discuss their possible rolein the ejection of stars from clusters. The period distribution of thebinaries is bimodal in log P, but we suggest that binaries with periodsof years and decades may eventually be found to fill the gap. The massratio distribution of the visual binaries increases toward lower massratios, but low mass ratio companions are rare among close,spectroscopic binaries. We present distributions of the eccentricity andlongitude of periastron for spectroscopic binaries with ellipticalorbits, and we find strong evidence of a bias in the longitude ofperiastron distribution.

On the wind momentum problem of O-type stars in the galaxy
We have examined the wind momentum problem of O-type stars in theGalaxy. It is shown that the discrepancy between theoretical andempirical mass loss rates and terminal velocities can be reversed byusing recently updated values of force multiplier parameters. With thesenew values, the momentum problem found by former investigators isreversed so that there now appears to be more than enough radiationforce in order to accelerate the stellar winds of a sample of GalacticO-type stars.

UV Spectral Classification of O and B Stars in the Small Magellanic =
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1997AJ....114.1951N&db_key=AST

Accurate Two-dimensional Classification of Stellar Spectra with Artificial Neural Networks
We present a solution to the long-standing problem of automaticallyclassifying stellar spectra of all temperature and luminosity classeswith the accuracy shown by expert human classifiers. We use the 15Angstroms resolution near-infrared spectral classification systemdescribed by Torres-Dodgen & Weaver in 1993. Using the spectrum withno manual intervention except wavelength registration, artificial neuralnetworks (ANNs) can classify these spectra with Morgan-Keenan types withan accuracy comparable to that obtained by human experts using 2Angstroms resolution blue spectra, which is about 0.5 types (subclasses)in temperature and about 0.25 classes in luminosity. Accuratetemperature classification requires a hierarchy of ANNs, whileluminosity classification is most successful with a single ANN. Wepropose an architecture for a fully automatic classification system.

A Survey for H alpha Emission in Massive Binaries: The Search for Colliding Wind Candidates
I report the results of the first all-sky survey of H alpha emission inthe spectra of O-type binaries. The survey includes 26 systems, of which10 have emission that extends clearly above the continuum. This is thefirst report of emission for four of these. An additional three systemsshow small distortions in the H alpha profile that may result from weakemission. I compare the distribution of emission systems in H-R diagramsfor both binary and single stars, using a survey of single O-type starsdone by Conti (1974). Emission in main-sequence systems is extremelyrare and is completely absent in my sample of binary stars. Among binarystars, 78% of the systems containing giants show some emission, while nosingle giants in Conti's sample do. In the case of supergiants, 78% ofsingle stars show emission, while all supergiant binaries show strongemission. H alpha emission may come from a variety sources, but the factthat binaries have a higher incidence and strength of emission inpost--main-sequence stages may indicate that wind interactions are acommon source of emission in massive binaries. To ascertain whether ornot colliding winds have been observed, it will be necessary to studythe H alpha line profile throughout several orbits of each candidatecolliding wind system and look for recurring orbital-phase--relatedvariations. Such a study is underway.

H-Band Spectroscopic Classification of OB Stars
We present a new spectroscopic classification for OB stars based onH-band (1.5 \mic \ to 1.8 \mic) observations of a sample of stars withoptical spectral types. Our initial sample of nine stars demonstratesthat the combination of He 1 1.7002 \mic \ and H Brackett seriesabsorption can be used to determine spectral types for stars between ~O4 and B7 (to within ~ +/- 2 sub-types). We find that the Brackettseries exhibits luminosity effects similar to the Balmer series for theB stars. This classification scheme will be useful in studies ofoptically obscured high mass star forming regions. In addition, wepresent spectra for the OB stars near 1.1 \mic \ and 1.3 \mic \ whichmay be of use in analyzing their atmospheres and winds.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Cygne
Right ascension:20h05m39.80s
Declination:+35°36'28.0"
Apparent magnitude:7.781
Distance:1492.537 parsecs
Proper motion RA:-5.6
Proper motion Dec:-6.9
B-T magnitude:7.937
V-T magnitude:7.794

Catalogs and designations:
Proper Names
HD 1989HD 190864
TYCHO-2 2000TYC 2678-109-1
USNO-A2.0USNO-A2 1200-14420965
HIPHIP 98976

→ Request more catalogs and designations from VizieR