Home     Getting Started     New Pictures     Picture of the Day     Blog New!     Login  

HD 156111


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Precise radial velocity measurements of G and K giants. Multiple systems and variability trend along the Red Giant Branch
We present the results of our radial velocity (RV) measurements of G andK giants, concentrating on the presence of multiple systems in oursample. Eighty-three giants have been observed for 2.5 years with thefiber-fed echelle spectrograph FEROS at the 1.52 m ESO telescope in LaSilla, Chile. Seventy-seven stars (93%) of the targets have beenanalyzed for RV variability using simultaneous Th-Ar calibration and across-correlation technique. We estimate the long-term precision of ourmeasurement as better than 25 m s-1. Projected rotationalvelocities have been measured for most stars of the sample. Within ourtime-base only 21 stars (or 27%) show variability below 2\sigma, whilethe others show RV variability with amplitudes up to several kms-1. The large amplitude (several km s-1) andshape (high eccentricity) of the RV variations for 11 of the programstars are consistent with stellar companions, and possibly brown dwarfcompanions for two of the program stars. In those systems for which afull orbit could be derived, the companions have minimum masses from˜0.6 M\sun down to 0.1 M\sun. To thesemultiple systems we add the two candidates of giant planets alreadydiscovered in the sample. This analysis shows that multiple systemscontribute substantially to the long-term RV variability of giant stars,with about 20% of the sample being composed of multiple systems despitescreening our sample for known binary stars. After removing binaries,the range of RV variability in the whole sample clearly decreases, butthe remaining stars retain a statistical trend of RV variability withluminosity: luminous cool giants with B-V≥1.2 show RV variationswith \sigma_{/lineRV} > 60 m s-1, while giants with B-V< 1.2 including those in the clump region exhibit less variability orthey are constant within our accuracy. The same trend is observed withrespect to absolute visual magnitudes: brighter stars show a largerdegree of variability and, when plotted in the RV variability vs.magnitude diagram a trend of increasing RV scatter with luminosity isseen. The amplitude of RV variability does not increase dramatically, aspredicted, for instance, by simple scaling laws. At least two luminousand cooler stars of the sample show a correlation between RV andchromospheric activity and bisector asymmetry, indicating that in thesetwo objects RV variability is likely induced by the presence of(chromospheric) surface structures.Based on observations collected at the 1.52 m-ESO telescope at the LaSilla Observatory from Oct 1999 to Feb. 2002 under ESO programs and theESO-Observatório Nacional, Brazil, agreement and in part onobservations collected on the Alfred Jensch 2 m telescope of theThüringer Landessternwarte Tautenburg.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

Some Cross-Reference Lists for the Catalog of Possible Nearby Stars
Not Available

Possible nearby stars brighter than tenth magnitude
Basic data are compiled for 447 stars brighter than 10th visualmagnitude which may be within 25 pc of the sun and are missing from boththe Gliese (1969) and the Woolley et al. (1970) catalogs of nearbystars. The list includes 245 stars with photometric parallaxes, 17 starswith trigonometric parallaxes, and nine stars with dynamical parallaxes,all of which parallaxes are at least 0.040 arcsec, as well as 176 likelycandidates. The stars are grouped into six categories according to thereliability of absolute-magnitude estimates and ranked within each groupon the basis of calculated distance. The distance estimates incorporatea kinematic correction to the photometric parallaxes which is based onthe size of a star's proper motion. A list of stars brighter than 10thmag which appear in the Gliese but not in the Woolley et al. catalog isalso provided to facilitate cross-reference with existing catalogs ofnearby stars.

Possible Nearby F and G Dwarfs
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1974PASP...86..769M&db_key=AST

MK classifications for F and G-type stars. I.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1969AJ.....74..916H&db_key=AST

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Hercule
Right ascension:17h14m57.14s
Declination:+19°40'57.4"
Apparent magnitude:7.225
Distance:44.092 parsecs
Proper motion RA:-82.1
Proper motion Dec:-181.8
B-T magnitude:8.218
V-T magnitude:7.307

Catalogs and designations:
Proper Names
HD 1989HD 156111
TYCHO-2 2000TYC 1544-1990-1
USNO-A2.0USNO-A2 1050-08495478
HIPHIP 84372

→ Request more catalogs and designations from VizieR