Home     Getting Started     New Pictures     Picture of the Day     Blog New!     Login  

HD 223969


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Local kinematics of K and M giants from CORAVEL/Hipparcos/Tycho-2 data. Revisiting the concept of superclusters
The availability of the Hipparcos Catalogue has triggered many kinematicand dynamical studies of the solar neighbourhood. Nevertheless, thosestudies generally lacked the third component of the space velocities,i.e., the radial velocities. This work presents the kinematic analysisof 5952 K and 739 M giants in the solar neighbourhood which includes forthe first time radial velocity data from a large survey performed withthe CORAVEL spectrovelocimeter. It also uses proper motions from theTycho-2 catalogue, which are expected to be more accurate than theHipparcos ones. An important by-product of this study is the observedfraction of only 5.7% of spectroscopic binaries among M giants ascompared to 13.7% for K giants. After excluding the binaries for whichno center-of-mass velocity could be estimated, 5311 K and 719 M giantsremain in the final sample. The UV-plane constructed from these datafor the stars with precise parallaxes (σπ/π≤20%) reveals a rich small-scale structure, with several clumpscorresponding to the Hercules stream, the Sirius moving group, and theHyades and Pleiades superclusters. A maximum-likelihood method, based ona Bayesian approach, has been applied to the data, in order to make fulluse of all the available stars (not only those with precise parallaxes)and to derive the kinematic properties of these subgroups. Isochrones inthe Hertzsprung-Russell diagram reveal a very wide range of ages forstars belonging to these groups. These groups are most probably relatedto the dynamical perturbation by transient spiral waves (as recentlymodelled by De Simone et al. \cite{Simone2004}) rather than to clusterremnants. A possible explanation for the presence of younggroup/clusters in the same area of the UV-plane is that they have beenput there by the spiral wave associated with their formation, while thekinematics of the older stars of our sample has also been disturbed bythe same wave. The emerging picture is thus one of dynamical streamspervading the solar neighbourhood and travelling in the Galaxy withsimilar space velocities. The term dynamical stream is more appropriatethan the traditional term supercluster since it involves stars ofdifferent ages, not born at the same place nor at the same time. Theposition of those streams in the UV-plane is responsible for the vertexdeviation of 16.2o ± 5.6o for the wholesample. Our study suggests that the vertex deviation for youngerpopulations could have the same dynamical origin. The underlyingvelocity ellipsoid, extracted by the maximum-likelihood method afterremoval of the streams, is not centered on the value commonly acceptedfor the radial antisolar motion: it is centered on < U > =-2.78±1.07 km s-1. However, the full data set(including the various streams) does yield the usual value for theradial solar motion, when properly accounting for the biases inherent tothis kind of analysis (namely, < U > = -10.25±0.15 kms-1). This discrepancy clearly raises the essential questionof how to derive the solar motion in the presence of dynamicalperturbations altering the kinematics of the solar neighbourhood: doesthere exist in the solar neighbourhood a subset of stars having no netradial motion which can be used as a reference against which to measurethe solar motion?Based on observations performed at the Swiss 1m-telescope at OHP,France, and on data from the ESA Hipparcos astrometry satellite.Full Table \ref{taba1} is only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/430/165}

New periodic variables from the Hipparcos epoch photometry
Two selection statistics are used to extract new candidate periodicvariables from the epoch photometry of the Hipparcos catalogue. Theprimary selection criterion is a signal-to-noise ratio. The dependenceof this statistic on the number of observations is calibrated usingabout 30000 randomly permuted Hipparcos data sets. A significance levelof 0.1 per cent is used to extract a first batch of candidate variables.The second criterion requires that the optimal frequency be unaffectedif the data are de-trended by low-order polynomials. We find 2675 newcandidate periodic variables, of which the majority (2082) are from theHipparcos`unsolved' variables. Potential problems with theinterpretation of the data (e.g. aliasing) are discussed.

BVRI photometry of spectroscopic binaries
Not Available

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

A spectroscopic orbit for HR 152
HR 152, one of the four reference stars used to standardizeradial-velocity observations made at Cambridge, has been shown bymeasurements made with the Dominion Astrophysical Observatoryradial-velocity spectrometer to be a spectroscopic binary. The effectsof its variabilty are traceable in the residuals of manyspectroscopic-binary orbits based on Cambridge data. The orbit has aperiod of 576 days and a semiamplitude of 0.69 + or - 0.08 km/s; this isthe first plausible orbit to be published with a semiamplitude smallerthan 1 km/s.

The period distribution of unevolved close binary systems
Period distributions have been examined for various spectral types ofabout 600 (eclipsing and spectroscopic) close binaries, which are likelyto be substantially unevolved. The comparison with the previouscorresponding analyses of extensive (but heterogeneous) binary samplesallows a clarification of the extent of the evolutionary andobservational selection effects. Remarkably, this analysis reveals agreat deficiency of short period binaries (with periods corresponding tocase A mass transfer) in the whole spectral range. For the late spectraltypes, this result may be connected with postformation angular momentumloss caused by stellar wind magnetic braking; at least for the late Band A spectral range, a ready interpretation of this finding is thatclose binaries of corresponding periods and spectral types are rarelyformed.

Catalogue of Eclipsing and Spectroscopic Binary Stars in the Regions of Open Clusters
Not Available

Spectroscopic binaries - 14th complementary catalog
Orbital-element data for 380 spectroscopic binaries are compiled andannotated in tables. The catalog represents a continuation of the 13thcatalog (Pedoussaut and Nadal, 1977) and uses the same general format.The techniques used in making the magnitudes and spectral typeshomogeneous are indicated.

Spectroscopic binary orbits from photoelectric radial velocities. A synopsis of papers 1-50
Not Available

List of Estimated Angular Separations of Spectroscopic Binaries
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1981A&AS...44...47H&db_key=AST

Seventh catalogue of the orbital elements of spectroscopic binary systems.
Not Available

Spectroscopic binary orbits from photoelectric radial velocities. Paper 13: HD 223969
Not Available

Photoelectric radial velocities of 87 7th-magnitude K stars previously observed by Redman.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1970MNRAS.148..211G&db_key=AST

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Cassiopée
Right ascension:23h54m02.02s
Declination:+56°29'21.9"
Apparent magnitude:7.175
Distance:2702.703 parsecs
Proper motion RA:2.2
Proper motion Dec:-2.1
B-T magnitude:9.345
V-T magnitude:7.355

Catalogs and designations:
Proper Names
HD 1989HD 223969
TYCHO-2 2000TYC 4009-2166-1
USNO-A2.0USNO-A2 1425-15760005
HIPHIP 117842

→ Request more catalogs and designations from VizieR