Home     Getting Started     New Pictures     Picture of the Day     Blog New!     Login  

α Cam (Alpha Camelopardalis)


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Reliability Checks on the Indo-US Stellar Spectral Library Using Artificial Neural Networks and Principal Component Analysis
The Indo-US coudé feed stellar spectral library (CFLIB) madeavailable to the astronomical community recently by Valdes et al. (2004,ApJS, 152, 251) contains spectra of 1273 stars in the spectral region3460 to 9464Å at a high resolution of 1Å (FWHM) and a widerange of spectral types. Cross-checking the reliability of this databaseis an important and desirable exercise since a number of stars in thisdatabase have no known spectral types and a considerable fraction ofstars has not so complete coverage in the full wavelength region of3460-9464Å resulting in gaps ranging from a few Å to severaltens of Å. We use an automated classification scheme based onArtificial Neural Networks (ANN) to classify all 1273 stars in thedatabase. In addition, principal component analysis (PCA) is carried outto reduce the dimensionality of the data set before the spectra areclassified by the ANN. Most importantly, we have successfullydemonstrated employment of a variation of the PCA technique to restorethe missing data in a sample of 300 stars out of the CFLIB.

The Discordance of Mass-Loss Estimates for Galactic O-Type Stars
We have determined accurate values of the product of the mass-loss rateand the ion fraction of P+4, M˙q(P+4), for asample of 40 Galactic O-type stars by fitting stellar wind profiles toobservations of the P V resonance doublet obtained with FUSE, ORFEUSBEFS, and Copernicus. When P+4 is the dominant ion in thewind [i.e., 0.5<~q(P+4)<=1], M˙q(P+4)approximates the mass-loss rate to within a factor of <~2. Theorypredicts that P+4 is the dominant ion in the winds of O7-O9.7stars, although an empirical estimator suggests that the range O4-O7 maybe more appropriate. However, we find that the mass-loss rates obtainedfrom P V wind profiles are systematically smaller than those obtainedfrom fits to Hα emission profiles or radio free-free emission bymedian factors of ~130 (if P+4 is dominant between O7 andO9.7) or ~20 (if P+4 is dominant between O4 and O7). Thesediscordant measurements can be reconciled if the winds of O stars in therelevant temperature range are strongly clumped on small spatial scales.We use a simplified two-component model to investigate the volumefilling factors of the denser regions. This clumping implies thatmass-loss rates determined from ``ρ2'' diagnostics havebeen systematically overestimated by factors of 10 or more, at least fora subset of O stars. Reductions in the mass-loss rates of this size haveimportant implications for the evolution of massive stars andquantitative estimates of the feedback that hot-star winds provide totheir interstellar environments.

Bright OB stars in the Galaxy. III. Constraints on the radial stratification of the clumping factor in hot star winds from a combined Hα, IR and radio analysis
Context: .Recent results strongly challenge the canonical picture ofmassive star winds: various evidence indicates that currently acceptedmass-loss rates, {dot M}, may need to be revised downwards, by factorsextending to one magnitude or even more. This is because the mostcommonly used mass-loss diagnostics are affected by "clumping"(small-scale density inhomogeneities), influencing our interpretation ofobserved spectra and fluxes. Aims: .Such downward revisions wouldhave dramatic consequences for the evolution of, and feedback from,massive stars, and thus robust determinations of the clumping propertiesand mass-loss rates are urgently needed. We present a first attemptconcerning this objective, by means of constraining the radialstratification of the so-called clumping factor. Methods: .To thisend, we have analyzed a sample of 19 Galactic O-type supergiants/giants,by combining our own and archival data for Hα, IR, mm and radiofluxes, and using approximate methods, calibrated to more sophisticatedmodels. Clumping has been included into our analysis in the"conventional" way, by assuming the inter-clump matter to be void.Because (almost) all our diagnostics depends on the square of density,we cannot derive absolute clumping factors, but only factors normalizedto a certain minimum. Results: .This minimum was usually found tobe located in the outermost, radio-emitting region, i.e., the radiomass-loss rates are the lowest ones, compared to {dot M} derived fromHα and the IR. The radio rates agree well with those predicted bytheory, but are only upper limits, due to unknown clumping in the outerwind. Hα turned out to be a useful tool to derive the clumpingproperties inside r < 3{ldots}5 Rstar. Our most importantresult concerns a (physical) difference between denser and thinnerwinds: for denser winds, the innermost region is more strongly clumpedthan the outermost one (with a normalized clumping factor of 4.1± 1.4), whereas thinner winds have similar clumping properties inthe inner and outer regions. Conclusions: .Our findings arecompared with theoretical predictions, and the implications arediscussed in detail, by assuming different scenarios regarding the stillunknown clumping properties of the outer wind.

Physical parameters and wind properties of galactic early B supergiants
We present optical studies of the physical and wind properties, plus CNOchemical abundances, of 25 O9.5-B3 Galactic supergiants. We employnon-LTE, line blanketed, extended model atmospheres, which provide amodest downward revision in the effective temperature scale of early Bsupergiants of up to 1-2 kK relative to previous non-blanketed results.The so-called "bistability jump" at B1 (Teff ˜ 21 kK)from Lamers et al. is rather a more gradual trend (with large scatter)from v&infy;/vesc˜3.4 for B0-0.5 supergiantsabove 24 kK to v&infy;/vesc˜ 2.5 for B0.7-1supergiants with 20 kK ≤ Teff ≤ 24 kK, andv&infy;/vesc˜ 1.9 for B1.5-3 supergiants below20 kK. This, in part, explains the break in observed UV spectralcharacteristics between B0.5 and B0.7 subtypes as discussed by Walbornet al. We compare derived (homogeneous) wind densities with recentresults for Magellanic Cloud B supergiants and generally confirmtheoretical expectations for stronger winds amongst Galacticsupergiants. However, winds are substantially weaker than predictionsfrom current radiatively driven wind theory, especially at mid-Bsubtypes, a problem which is exacerbated if winds are already clumped inthe Hα line forming region. In general, CNO elemental abundancesreveal strongly processed material at the surface of Galactic Bsupergiants, with mean N/C and N/O abundances 10 and 5 times higher thanthe Solar value, respectively, with HD 2905 (BC0.7 Ia) indicating thelowest degree of processing in our sample, and HD 152236 (B1.5Ia+) the highest.

Determination of the Mass Loss Rate and the Terminal Velocity of Stellar Winds. I. Genetic Algorithm for Automatic Line Profile Fitting
A new method for automatic fitting of Pline profiles in UV spectra ofstellar winds is presented. The line source function is calculated usingSobolev's approximation and the emergent flux is obtained by exactintegration of the equation of the radiation transport (similar to theSEI method described by Lamers et al. (1987)). The quality of the fit isevaluated using the likelihood estimator. The maximization of thelikelihood is done by a genetic algorithm. The advantages of our methodwith respect to other similar approaches are its robustness and itsinsensibility to the initial guess. In addition, the algorithmguarantees the localization of the global maximum of the likelihoodhypersurface, which is not the case for classical minimizationalgorithms. Here we present an implementation of the genetic algorithmfor line profile fitting, its tests on both synthetic and real data andan estimation of the confidence limits of the results.

Forty Years of Spectroscopic Stellar Astrophysics in Japan
The development of Japanese spectroscopic stellar astrophysics in therecent 40 years is reviewed from an observational point of view. In thisarticle, the research activities are provisionally divided into fourfields: hot stars, hot emission-line (Be) stars, cool stars, and otherstars. Historical developments of the observational facilities atOkayama Astrophysical Observatory (spectrographs and detectors) are alsosummarized in connection with the progress in scientific researchactivities.

On the feasibility of detection of neutron star companions to OB runaways using Gaia astrometry
For an illustrative sample of classical OB runaway stars, we examine thecapability of the upcoming Gaia satellite to detect compact companionsby the use of astrometric techniques. For the OB runaway stars in oursample, we estimate initial system parameters and consider the modifyingevolutionary effects of mass transfer and supernova explosion of theprimary. The possible system configurations that follow from this, andthe expected Gaia accuracy, determine the likelihood of detecting amovement of the photocentre due to an unseen companion. As the size ofthe natal kick imparted to the core of the exploding star is increasedthe overall probability of detecting a neutron star companion decreasesas more systems become disrupted. The overall detection probabilitiesfor our illustrative sample range from 2% to 27%, which imply thatwithin a distance of approximately 5 kpc from the Sun around 48detections of compact companions to runaway stars can be expected. Forcomparison, around 15% of High Mass X-ray Binaries would exhibit wobblesdetectable with Gaia.

Evolution of X-ray emission from young massive star clusters
The evolution of X-ray emission from young massive star clusters ismodelled, taking into account the emission from the stars as well asfrom the cluster wind. It is shown that the level and character of thesoft (0.2-10 keV) X-ray emission change drastically with cluster age andare tightly linked with stellar evolution. Using the modern X-rayobservations of massive stars, we show that the correlation betweenbolometric and X-ray luminosity known for single O stars also holds forO+O and (Wolf-Rayet) WR+O binaries. The diffuse emission originates fromthe cluster wind heated by the kinetic energy of stellar winds andsupernova explosions. To model the evolution of the cluster wind, themass and energy yields from a population synthesis are used as input toa hydrodynamic model. It is shown that in a very young cluster theemission from the cluster wind is low. When the cluster evolves, WRstars are formed. Their strong stellar winds power an increasing X-rayemission of the cluster wind. Subsequent supernova explosions pump thelevel of diffuse emission even higher. Clusters at this evolutionarystage may have no X-ray-bright stellar point sources, but a relativelyhigh level of diffuse emission. A supernova remnant may become adominant X-ray source, but only for a short time interval of a fewthousand years. We retrieve and analyse Chandra and XMM-Newtonobservations of six massive star clusters located in the LargeMagellanic Cloud (LMC). Our model reproduces the observed diffuse andpoint-source emission from these LMC clusters, as well as from theGalactic clusters Arches, Quintuplet and NGC 3603.

Correlation patterns between 11 diffuse interstellar bands and ultraviolet extinction
We relate the equivalent widths of 11 diffuse interstellar bands,measured in the spectra of 49 stars, to different colour excesses in theultraviolet. We find that most of the observed bands correlatepositively with the extinction in the neighbourhood of the2175-Åbump. Correlation with colour excesses in other parts of theextinction curve is more variable from one diffuse interstellar band toanother; we find that some diffuse bands (5797, 5850 and 6376 Å)correlate positively with the overall slope of the extinction curve,while others (5780 and 6284 Å) exhibit negative correlation. Wediscuss the implications of these results on the links between thediffuse interstellar band carriers and the properties of theinterstellar grains.

A Medium Resolution Near-Infrared Spectral Atlas of O and Early-B Stars
We present intermediate-resolution (R~8000-12,000) high signal-to-noise(S/N) H- and K-band spectroscopy of a sample of 37 optically visiblestars, ranging in spectral type from O3 to B3 and representing mostluminosity classes. Spectra of this quality can be used to constrain thetemperature, luminosity, and general wind properties of OB stars, whenused in conjunction with sophisticated atmospheric model codes. Mostimportant is the need for moderately high resolutions (R>=5000) andvery high signal-to-noise (S/N>=150) spectra for a meaningful profileanalysis. When using near-infrared spectra for a classification system,moderately high signal-to-noise (S/N~100) is still required, though theresolution can be relaxed to just a thousand or two. In the Appendix weprovide a set of very high-quality near-infrared spectra of Brackettlines in six early-A dwarfs. These can be used to aid in the modelingand removal of such lines when early-A dwarfs are used for telluricspectroscopic standards.

FUSE Measurements of Far-Ultraviolet Extinction. I. Galactic Sight Lines
We present extinction curves that include data down to far-ultravioletwavelengths (FUV; 1050-1200 Å) for nine Galactic sight lines. TheFUV extinction was measured using data from the Far UltravioletSpectroscopic Explorer. The sight lines were chosen for their unusualextinction properties in the infrared through the ultraviolet; that theyprobe a wide range of dust environments is evidenced by the large spreadin their measured ratios of total to selective extinction,RV=2.43-3.81. We find that extrapolation of the Fitzpatrick& Massa relationship from the ultraviolet appears to be a goodpredictor of the FUV extinction behavior. We find that predictions ofthe FUV extinction based on the Cardelli, Clayton, & Mathis (CCM)dependence on RV give mixed results. For the seven extinctioncurves well represented by CCM in the infrared through ultraviolet(x<8 μm-1), the FUV extinction is well predicted inthree sight lines, overpredicted in two sight lines, and underpredictedin two sight lines. A maximum entropy method analysis using a simplethree-component grain model shows that seven of the nine sight lines inthe study require a larger fraction of grain materials to be in dustwhen FUV extinction is included in the models. Most of the added grainmaterial is in the form of small (radii <~ 200 Å) grains.Based on observations with the NASA-CNES-CSA Far UltravioletSpectroscopic Explorer, which is operated by the Johns HopkinsUniversity under NASA contract NAS5-32985.

X-Ray Counterparts of Runaway Stars
An X-ray search for possible compact companions of runaway OB stars hasbeen conducted using pointed ROSAT observations. Of a list of 71 runawaystars, ROSAT exposures were available for 24, of which 13 are detected.These numbers are nearly 3 times larger than for a previously studiedEinstein sample, and spectral information is exploited as well.Luminosities, hardness ratios, and long-term variability are as fornormal OB stars and do not suggest the presence of collapsed companions.A result like this is often interpreted as support for dynamicalejection from a dense group rather than a supernova event in a binary asa production process for runaway stars. There are, however, severalcircumstances that may adversely affect the observability of a compactcompanion, or after a supernova explosion systems may be disruptedbecause of the large natal kick velocity imparted to the neutron star asa result of asymmetries in the explosions. It is noted that there isactually evidence for both of these production routes and that they maybe expected to occur sequentially in the evolution of OB associations.

Quantitative H and K band spectroscopy of Galactic OB-stars at medium resolution
In this paper we have analyzed 25 Galactic O and early B-stars by meansof H and K band spectroscopy, with the primary goal to investigate towhat extent a lone near-IR spectroscopy is able to recover stellar andwind parameters derived in the optical. Most of the spectra have beentaken with subaru-ircs, at an intermediate resolution of 12 000, andwith a very high S/N, mostly on the order of 200 or better. In order tosynthesize the strategic H/He lines, we have used our recent,line-blanketed version of fastwind (Puls et al. 2005, A&A, 435,669). In total, seven lines have been investigated, where for two starswe could make additional use of the Hei2.05 singlet which has beenobserved with irtf-cshell. Apart from Brγ and Heii2.18, the otherlines are predominately formed in the stellar photosphere, and thusremain fairly uncontaminated from more complex physical processes,particularly clumping. First we investigated the predicted behaviour ofthe strategic lines. In contradiction to what one expects from theoptical in the O-star regime, almost all photospheric H/Hei/Heii H/Kband lines become stronger if the gravity decreases. Concerning H andHeii, this finding is related to the behaviour of Stark broadening as afunction of electron density, which in the line cores is different formembers of lower (optical) and higher (IR) series. Regarding Hei, thepredicted behaviour is due to some subtle NLTE effects resulting in astronger overpopulation of the lower level when the gravity decreases.We have compared our calculations with results from the alternative NLTEmodel atmosphere code cmfgen (Hillier & Miller 1998, ApJ, 496, 407).In most cases, we found reasonable or nearly perfect agreement. Only theHei2.05 singlet for mid O-types suffers from some discrepancy, analogouswith findings for the optical Hei singlets. For most of our objects, weobtained good fits, except for the line cores of Brγ in earlyO-stars with significant mass-loss. Whereas the observations showBrγ mostly as rather symmetric emission lines, the models predicta P Cygni type profile with strong absorption. This discrepancy (whichalso appears in lines synthesized by cmfgen) might be an indirect effectof clumping. After having derived the stellar and wind parameters fromthe IR, we have compared them to results from previous optical analyses.Overall, the IR results coincide in most cases with the optical oneswithin the typical errors usually quoted for the correspondingparameters, i.e., an uncertainty in T_eff of 5%, in log g of 0.1 dex andin {dot M} of 0.2 dex, with lower errors at higher wind densities.Outliers above the 1-σ level where found in four cases withrespect to log g and in two cases for {dot M}.

To see or not to see a bow shock. Identifying bow shocks with Hα allsky surveys
OB-stars have the highest luminosities and strongest stellar winds ofall stars, which enables them to interact strongly with theirsurrounding ISM, thus creating bow shocks. These offer us an idealopportunity to learn more about the ISM. They were first detected andanalysed around runaway OB-stars using the IRAS allsky survey by vanBuren et al. (1995, AJ, 110, 2614). Using the geometry of such bowshocks information concerning the ISM density and its fluctuations canbe gained from such infrared observations. As to help to improve the bowshock models, additional observations at other wavelengths, e.g.Hα, are most welcome. However due to their low velocity these bowshocks have a size of ˜ 1°, and could only be observed as awhole with great difficulties. In the light of the new Hα allskysurveys (SHASSA/VTSS) this is no problem any more. We developeddifferent methods to detect bow shocks, e.g. the improved determinationof their symmetry axis with radial distance profiles. Using twoHα-allsky surveys (SHASSA/VTSS), we searched for bow shocks andcompared the different methods. From our sample we conclude, that thecorrelation between the direction of both proper motion and the symmetryaxis determined with radial distance profile is the most promisingdetection method. We found eight bow shocks around HD17505, HD 24430, HD48099, HD 57061, HD92206, HD 135240, HD149757, and HD 158186 from 37 candidatestaken from van Buren et al. (1995, AJ, 110, 2614). Additionally to thetraditional determination of ISM parameters using the standoff distanceof the bow shock, another approach was chosen, using the thickness ofthe bow-shock layer. Both methods lead to the same results, yieldingdensities (˜ 1 cm-3) and the maximal temperatures (˜104 K), that fit well to the up-to-date picture of the WarmIonised Medium.

Lower mass loss rates in O-type stars: Spectral signatures of dense clumps in the wind of two Galactic O4 stars
We have analyzed the far-ultraviolet spectrum of two Galactic O4 stars,the O4If+ supergiant HD 190429A and the O4V((f)) dwarf HD 96715, usingarchival FUSE and IUE data. We have conducted a quantitative analysisusing the two NLTE model atmosphere and wind codes, tlusty and cmfgen,which incorporate a detailed treatment of NLTE metal line blanketing.From the far-UV spectrum, we have derived the stellar and windparameters and the surface composition of the two stars. The surface ofHD 190429A has a composition typical of an evolved O supergiant(nitrogen-rich, carbon and oxygen-poor), while HD 96715 exhibits surfacenitrogen enhancement similar to the enrichment found in SMC O dwarfswhich has been attributed to rotationally-induced mixing. Followingstudies of Magellanic Cloud O stars, we find that homogeneous windmodels could not match the observed profile of O vλ1371 andrequire very low phosphorus abundance to fit the Pvλλ1118-1128 resonance lines. We show, on the other hand,that we are able to match the O v and P v lines using clumped windmodels. In addition to these lines, we find that N ivλ1718 isalso sensitive to wind clumping. For both stars, we have calculatedclumped wind models that match well all these lines from differentspecies and that remain consistent with Hα data. In particular, wehave achieved an excellent match of the P v resonance doublet,indicating that our physical description of clumping is adequate. Thesefits therefore provide a coherent and thus much stronger evidence ofwind clumping in O stars than earlier claims. We show that the successof the clumped wind models in matching these lines results fromincreased recombination in the clumps, hence from a better descriptionof the wind ionization structure. We find that the wind of these twostars is highly clumped, as expressed by very small volume fillingfactors, namely f_&infy; = 0.04 for HD 190429A and f_&infy; = 0.02 forHD 96715. In agreement with our analysis of SMC stars, clumping startsdeep in the wind, just above the sonic point. The most crucialconsequence of our analysis is that the mass loss rates of O stars needto be revised downward significantly, by a factor of 3 and more. Theselower mass loss rates will affect substantially the evolution of massivestars. Accounting for wind clumping is essential when determining thewind properties of O stars. Our study therefore calls for a fundamentalrevision in our understanding of mass loss and of O-type star stellarwinds.

Atmospheric NLTE-models for the spectroscopic analysis of blue stars with winds. II. Line-blanketed models
We present new or improved methods for calculating NLTE, line-blanketedmodel atmospheres for hot stars with winds (spectral types A to O), withparticular emphasis on fast performance. These methods have beenimplemented into a previous, more simple version of the model atmospherecode Fastwind (Santolaya-Rey et al. 1997) and allow us tospectroscopically analyze large samples of massive stars in a reasonabletime-scale, using state-of-the-art physics. Although this updatedversion of the code has already been used in a number of recentinvestigations, the corresponding methods have not been explained indetail so far, and no rigorous comparison with results from alternativecodes has been performed. This paper intends to address both topics. Inparticular, we describe our (partly approximate) approach to solve theequations of statistical equilibrium for those elements that areprimarily responsible for line-blocking and blanketing, as well as anapproximate treatment of the line-blocking itself, which is based on asimple statistical approach using suitable means of line opacities andemissivities. Both methods are validated by specific tests. Furthermore,we comment on our implementation of a consistent temperature structure.In the second part, we concentrate on a detailed comparison with resultsfrom two codes used in alternative spectroscopical investigations,namely cmfgen (Hillier & Miller 1998) and wm-Basic (Pauldrach et al.2001). All three codes predict almost identical temperature structuresand fluxes for λ > 400 Å, whereas at lower wavelengths anumber of discrepancies are found. Particularly in the Heii continua,where fluxes and corresponding numbers of ionizing photons reactextremely sensitively to subtle differences in the models, we considerany uncritical use of these quantities (e.g., in the context of nebuladiagnostics) as unreliable. Optical H/He lines as synthesized byfastwind are compared with results from cmfgen, obtaining a remarkablecoincidence, except for the Hei singlets in the temperature rangebetween 36 000 to 41 000 K for dwarfs and between 31 000 to 35 000 K forsupergiants, where cmfgen predicts much weaker lines. Consequences ofthese discrepancies are discussed. Finally, suggestions are presented asto adequately parameterize model-grids for hot stars with winds, withonly one additional parameter compared to standard grids fromplane-parallel, hydrostatic models.

On the massive stellar population of the super star cluster Westerlund 1
We present new spectroscopic and photometric observations of the youngGalactic open cluster Westerlund 1 (Wd 1) that reveala unique population of massive evolved stars. We identify ~200 clustermembers and present spectroscopic classifications for ~25% of these. Wefind that all stars so classified are unambiguously post-Main Sequenceobjects, consistent with an apparent lack of an identifiable MainSequence in our photometric data to V˜ 20. We are able to identifyrich populations of Wolf Rayet stars, OB supergiants and short livedtransitional objects. Of these, the latter group consists of both hot(Luminous Blue Variable and extreme B supergiant) and cool (YellowHypergiant and Red Supergiant) objects - we find that half the knownGalactic population of YHGs resides within Wd 1. We obtain a meanV-MV ~ 25 mag from the cluster Yellow Hypergiants, implying aMain Sequence turnoff at or below MV =-5 (O7 V or later).Based solely on the masses inferred for the 53 spectroscopicallyclassified stars, we determine an absolute minimum mass of ~1.5 ×10^3~Mȯ for Wd 1. However, considering the completephotometrically and spectroscopically selected cluster population andadopting a Kroupa IMF we infer a likely mass for Wd 1 of~10^5~Mȯ, noting that inevitable source confusion andincompleteness are likely to render this an underestimate. As such, Wd 1is the most massive compact young cluster yet identified in the LocalGroup, with a mass exceeding that of Galactic Centre clusters such asthe Arches and Quintuplet. Indeed, the luminosity, inferred mass andcompact nature of Wd 1 are comparable with those of Super Star Clusters- previously identified only in external galaxies - and is consistentwith expectations for a Globular Cluster progenitor.

Hydrogen in the atmosphere of the evolved WN3 Wolf-Rayet star WR 3: defying an evolutionary paradigm?
WR 3 is the brightest very early-type WN star in the sky. Based onseveral years of time-resolved spectroscopy and precision photometry onvarious time-scales, we deduce that WR 3 is most likely a single,weak-lined star of type WN3ha (contrary to its current catalogue-type ofWN3 + O4), with H lines occurring both in emission and absorption in itswind. This conclusion is confirmed and strengthened via detailedmodelling of the spectrum of WR 3. Given the similarity of WR 3 withnumerous H-rich WNE stars in the Large Magellanic Cloud and especiallythe Small Magellanic Cloud, and its location towards the metal-deficientexterior of the Galaxy, we conclude that rotationally induced meridionalcirculation probably led to the apparently unusual formation of this hotGalactic WN star with enhanced hydrogen. Although we cannot completelyrule out the possibility of a binary with a low orbital inclinationand/or long period, we regard this latter possibility as highlyunlikely.

Large-scale wind structures in OB supergiants: a search for rotationally modulated Hα variability
We present the results of a long-term monitoring campaign of theHα line in a sample of bright OB supergiants (O7.5-B9) which aimsat detecting rotationally modulated changes potentially related to theexistence of large-scale wind structures. A total of 22 objects weremonitored during 36 nights spread over six months in 2001-2002.Coordinated broad-band photometric observations were also obtained forsome targets. Conspicuous evidence for variability in Hα is foundfor the stars displaying a feature contaminated by wind emission. Mostchanges take place on a daily time-scale, although hourly variations arealso occasionally detected. Convincing evidence for a cyclical patternof variability in Hα has been found in two stars: HD 14134 and HD42087. Periodic signals are also detected in other stars, butindependent confirmation is required. Rotational modulation is suggestedfrom the similarity between the observed recurrence time-scales (in therange 13-25 d) and estimated periods of stellar rotation. We callattention to the atypical case of HD 14134, which exhibits a clear12.8-d periodicity, both in the photometric and in the spectroscopicdata sets. This places this object among a handful of early-type starswhere one may observe a clear link between extended wind structures andphotospheric disturbances. Further modelling may test the hypothesisthat azimuthally-extended wind streams are responsible for the patternsof spectral variability in our target stars.

Line Variability in the Spectrum of Supergiant alpha Cam
CCD spectra taken with the PFES and CEGS echelle spectrographs attachedto the 6-m Special Astrophysical Observatory (Russian Academy ofSciences) telescope and the 2-m Shamakha Astrophysical Observatory(National Academy of Sciences of Azerbaijan) telescope, respectively,were used to study the line-profile variations in the spectrum of thehot supergiant alpha Cam. No fast (<1.5 h) line-profile andradial-velocity variations were found. Some of the systematic effectsthat cause spurious variability are considered. The H-alpha profilevariability appears symmetric relative to the radial velocity of thestar's center of mass and is attributable to variable blueshifted andredshifted emission and/or absorption components superimposed on avariable photospheric profile. The H line shows evidence of alarge-scale mass ejection from the stellar surface, which is alsotraceable in other spectral lines. The He II 4686 line exhibits aninverse P Cyg profile, while the red wing of the He I 5876 line showsweak and variable emission. The fast (on characteristic time scales ofshorter than an hour) variability of the He II 4686 profile that waspreviously revealed by our observations (Kholtygin et al. 2000) iscalled into question. A comparison of the observational data on thevariability of ultraviolet and optical line profiles for the supergiantalpha Cam suggests that nonradial motions are mainly responsible for theradial-velocity and line-profile variability.

The Indo-US Library of Coudé Feed Stellar Spectra
We have obtained spectra for 1273 stars using the 0.9 m coudéfeed telescope at Kitt Peak National Observatory. This telescope feedsthe coudé spectrograph of the 2.1 m telescope. The spectra havebeen obtained with the no. 5 camera of the coudé spectrograph anda Loral 3K×1K CCD. Two gratings have been used to provide spectralcoverage from 3460 to 9464 Å, at a resolution of ~1 Å FWHMand at an original dispersion of 0.44 Å pixel-1. For885 stars we have complete spectra over the entire 3460 to 9464 Åwavelength region (neglecting small gaps of less than 50 Å), andpartial spectral coverage for the remaining stars. The 1273 stars havebeen selected to provide broad coverage of the atmospheric parametersTeff, logg, and [Fe/H], as well as spectral type. The goal ofthe project is to provide a comprehensive library of stellar spectra foruse in the automated classification of stellar and galaxy spectra and ingalaxy population synthesis. In this paper we discuss thecharacteristics of the spectral library, viz., details of theobservations, data reduction procedures, and selection of stars. We alsopresent a few illustrations of the quality and information available inthe spectra. The first version of the complete spectral library is nowpublicly available from the National Optical Astronomy Observatory(NOAO) via ftp and http.

A Galactic O Star Catalog
We have produced a catalog of 378 Galactic O stars with accuratespectral classifications that is complete for V<8 but includes manyfainter stars. The catalog provides cross-identifications with othersources; coordinates (obtained in most cases from Tycho-2 data);astrometric distances for 24 of the nearest stars; optical (Tycho-2,Johnson, and Strömgren) and NIR photometry; group membership,runaway character, and multiplicity information; and a Web-based versionwith links to on-line services.

High-Resolution Mid-infrared Imaging of SN 1987A
Using the Thermal Region Camera and Spectrograph (T-ReCS) attached tothe Gemini South 8 m telescope, we have detected and resolved 10 μmemission at the position of the inner equatorial ring (ER) of supernovaSN 1987A at day 6067. ``Hot spots'' similar to those found in theoptical and near-IR are clearly present. The morphology of the 10 μmemission is globally similar to the morphology at other wavelengths fromX-rays to radio. The observed mid-IR flux in the region of SN 1987A isprobably dominated by emission from dust in the ER. We have alsodetected the ER at 20 μm at a 4 σ level. Assuming that thermaldust radiation is the origin of the mid-IR emission, we derive a dusttemperature of 180+20-10 K and a dust mass of(1-8)×10-5 Msolar for the ER. Ourobservations also show a weak detection of the central ejecta at 10μm. We show that previous bolometric flux estimates (through day2100) were not significantly contaminated by this newly discoveredemission from the ER. If we assume that the energy input comes fromradioactive decays only, our measurements, together with the currenttheoretical models, set a temperature of 90K<=T<=100 K and a massrange of 10-4 to 2×10-3 Msolarfor the dust in the ejecta. With such dust temperatures the estimatedthermal emission is (9+/-3)×1035 ergs s-1from the inner ring and (1.5+/-0.5)×1036 ergss-1 from the ejecta. Finally, using SN 1987A as a template,we discuss the possible role of supernovae as major sources of dust inthe universe.Based on observations obtained at the Gemini Observatory, which isoperated by the Association of Universities for Research in Astronomy(AURA), Inc., under cooperative agreement with the NSF on behalf of theGemini partnership: the National Science Foundation (United States), theParticle Physics and Astronomy Research Council (United Kingdom), theNational Research Council (Canada), CONICYT (Chile), the AustralianResearch Council (Australia), CNPq (Brazil), and CONICET (Argentina).

Reanalysis of Copernicus Measurements of Interstellar Carbon Monoxide
We used archival data acquired with Copernicus to reexamine CO columndensities, as self-consistent oscillator strengths are now available.Our focus is on lines of sight containing modest amounts of molecularspecies. Our resulting column densities are small enough thatself-shielding from photodissociation does not occur in the cloudsprobed by the observations. While our sample shows that the columndensities of CO and H2 are related, no correspondence withthe CH column density is evident. The case for the CH+ columndensity is less clear. Recent chemical models for these sight linessuggest that CH is mainly a by-product of CH+ synthesis inlow-density gas. The models are most successful in reproducing theamounts of CO in the densest sight lines. Thus, much of the COabsorption must arise from denser clumps along the line of sight toaccount for the trend with H2.

Total to Selective Extinction Ratios and Visual Extinctions from Ultraviolet Data
We present determinations of the total to selective extinction ratio R_Vand visual extinction A_V values for Milky Way stars using ultravioletcolor excesses. We extend the analysis of Gnacinski and Sikorski (1999)by using non-equal weights derived from observational errors. We presenta detailed discussion of various statistical errors. In addition, weestimate the level of systematic errors by considering differentnormalization of the extinction curve adopted by Wegner (2002). Ourcatalog of 782 R_V and A_V values and their errors is available in theelectronic form on the World Wide Web.

On the Hipparcos parallaxes of O stars
We compare the absolute visual magnitude of the majority of bright Ostars in the sky as predicted from their spectral type with the absolutemagnitude calculated from their apparent magnitude and the Hipparcosparallax. We find that many stars appear to be much fainter thanexpected, up to five magnitudes. We find no evidence for a correlationbetween magnitude differences and the stellar rotational velocity assuggested for OB stars by Lamers et al. (1997, A&A, 325, L25), whosesmall sample of stars is partly included in ours. Instead, by means of asimulation we show how these differences arise naturally from the largedistances at which O stars are located, and the level of precision ofthe parallax measurements achieved by Hipparcos. Straightforwardlyderiving a distance from the Hipparcos parallax yields reliable resultsfor one or two O stars only. We discuss several types of bias reportedin the literature in connection with parallax samples (Lutz-Kelker,Malmquist) and investigate how they affect the O star sample. Inaddition, we test three absolute magnitude calibrations from theliterature (Schmidt-Kaler et al. 1982, Landolt-Börnstein; Howarth& Prinja 1989, ApJS, 69, 527; Vacca et al. 1996, ApJ, 460, 914) andfind that they are consistent with the Hipparcos measurements. AlthoughO stars conform nicely to the simulation, we notice that some B stars inthe sample of \citeauthor{La97} have a magnitude difference larger thanexpected.

Radiation-driven winds of hot luminous stars. XV. Constraints on the mass-luminosity relation of central stars of planetary nebulae
We present a new model atmosphere analysis of nine central stars ofplanetary nebulae. This study is based on a new generation of realisticstellar model atmospheres for hot stars; state-of-the-art,hydrodynamically consistent, spherically symmetric model atmospheresthat have been shown to correctly reproduce the observed UV spectra ofmassive Population I O-type stars. The information provided by the windfeatures (terminal velocity, mass loss rate) permits to derive thephysical size of each central star, from which we can derive the stellarluminosity, mass, and distance, without having to assume a relationbetween stellar mass and luminosity taken from the theory of stellarstructure and AGB and post-AGB evolution. The results of our analysisare quite surprising: we find severe departures from the generallyaccepted relation between post-AGB central star mass and luminosity.

NLTE models of line-driven stellar winds. I. Method of calculation and first results for O stars
New numerical models of line-driven stellar winds of late O stars arepresented. Statistical equilibrium (NLTE) equations of the most abundantelements are solved. Properly obtained occupation numbers are used tocalculate consistent radiative force and radiative heating terms. Winddensity, velocity and temperature are calculated as a solution of modelhydrodynamical equations. Contrary to other published models we accountfor a multicomponent wind nature and do not simplify the calculation ofthe radiative force (e.g. using force multipliers). We discuss theconvergence behaviour of our models. The ability of our models topredict correct values of mass-loss rates and terminal velocities ofselected late O stars (mainly giants and supergiants) is demonstrated.The systematic difference between predicted and observed terminalvelocities reported in the literature has been removed. Moreover, wefound good agreement between the theoretical wind momentum-luminosityrelationship and the observed one for Cyg OB2 supergiants.Appendices A, B and C are only available in electronic form athttp://www.edpsciences.org

Stellar and wind parameters of Galactic O-stars. The influence of line-blocking/blanketing
We have re-analyzed the Galactic O-star sample from \citet{puls96} bymeans of line-blanketed NLTE model atmospheres in order to investigatethe influence of line-blocking/blanketing on the derived parameters. Theanalysis has been carried out by fitting the photospheric and wind linesfrom H and He. In most cases we obtained a good fit, but we have alsofound certain inconsistencies which are probably related to a stillinadequate treatment of the wind structure. These inconsistenciescomprise the line cores of Hγ and Hβ insupergiants (the synthetic profiles are too weak when the mass-loss rateis determined by matching Hα) and the ``generalizeddilution effect'' (cf. \citealt{vo89}) which is still present in He I4471 of cooler supergiants and giants.Compared to pure H/He plane-parallel models we found a decrease ineffective temperatures which is largest at earliest spectral types andfor supergiants (with a maximum shift of roughly 8000 K). This findingis explained by the fact that line-blanketed models of hot stars havephotospheric He ionization fractions similar to those from unblanketedmodels at higher Teff and higher log g. Consequently, anyline-blanketed analysis based on the He ionization equilibrium resultsin lower Teff-values along with a reduction of either log gor helium abundance (if the reduction of log g is prohibited by theBalmer line wings). Stellar radii and mass-loss rates, on the otherhand, remain more or less unaffected by line-blanketing.We have calculated ``new'' spectroscopic masses and compared them withprevious results. Although the former mass discrepancy \citep{h92}becomes significantly reduced, a systematic trend for masses below 50Msun seems to remain: The spectroscopically derived valuesare smaller than the ``evolutionary masses'' by roughly 10Msun. Additionally, a significant fraction of our samplestars stays over-abundant in He, although the actual values were foundto be lower than previously determined.Also the wind-momentum luminosity relation (WLR) changes because oflower luminosities and almost unmodified wind-momentum rates. Comparedto previous results, the separation of the WLR as a function ofluminosity class is still present but now the WLR for giants/dwarfs isconsistent with theoretical predictions.We argue that the derived mass-loss rates of stars withHα in emission are affected by clumping in the lowerwind region. If the predictions from different and independenttheoretical simulations (\citealt {Vink00, Paul03, puls03a}) that theWLR should be independent of luminosity class were correct, a typicalclumping factor <ρ2>/<ρ>2 ≈5 should be derived by ``unifying'' the different WLRs.Based upon observations obtained at the INT and the European SouthernObservatory, La Silla, Chile. The INT is operated on the island of LaPalma by the ING in the Spanish Observatorio de El Roque de losMuchachos of the Instituto de Astrofísica de Canarias.Appendix A in only available in electronic form athttp://www.edpsciences.org

On the relation between diffuse bands and column densities of H2, CH and CO molecules
Mutual relations between column densities of H2, CH and COmolecules as well as between the latter and strengths of the major 5780and 5797 diffuse bands are presented and discussed. The CH radical seemsto be a good H2 tracer, possibly better than CO. It is alsodemonstrated that the molecular fraction of the H2 moleculeis correlated with an intensity ratio of 5797 and 5780 DIBs, suggestingthe possible formation of narrow DIB carriers in denser clouds,dominated by molecular hydrogen and reasonably shielded from ionizing UVradiation by small dust grains.Tables 1 and 2 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/414/949

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Camelopardalis
Right ascension:04h54m03.00s
Declination:+66°20'34.0"
Apparent magnitude:4.29
Distance:2127.66 parsecs
Proper motion RA:0
Proper motion Dec:0
B-T magnitude:4.273
V-T magnitude:4.292

Catalogs and designations:
Proper NamesAlpha Camelopardalis
Bayerα Cam
Flamsteed9 Cam
HD 1989HD 30614
TYCHO-2 2000TYC 4091-2094-1
USNO-A2.0USNO-A2 1500-03957007
BSC 1991HR 1542
HIPHIP 22783

→ Request more catalogs and designations from VizieR