Home     Getting Started     New Pictures     Picture of the Day     Blog New!     Login  

HD 151932


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Early-type stars observed in the ESO UVES Paranal Observatory Project - I. Interstellar NaI UV, TiII and CaII K observations*
We present an analysis of interstellar NaI (λair=3302.37 and 3302.98 Å), TiII(λair= 3383.76Å) and CaII K (λair= 3933.66 Å) absorptionfeatures for 74 sightlines towards O- and B-type stars in the Galacticdisc. The data were obtained from the Ultraviolet and Visual EchelleSpectrograph Paranal Observatory Project, at a spectral resolution of3.75 km s-1 and with mean signal-to-noise ratios per pixel of260, 300 and 430 for the NaI, TiII and CaII observations, respectively.Interstellar features were detected in all but one of the TiIIsightlines and all of the CaII sightlines. The dependence of the columndensity of these three species with distance, height relative to theGalactic plane, HI column density, reddening and depletion relative tothe solar abundance has been investigated. We also examine the accuracyof using the NaI column density as an indicator of that for HI. Ingeneral, we find similar strong correlations for both Ti and Ca, andweaker correlations for Na. Our results confirm the general belief thatTi and Ca occur in the same regions of the interstellar medium (ISM) andalso that the TiII/CaII ratio is constant over all parameters. We henceconclude that the absorption properties of Ti and Ca are essentiallyconstant under the general ISM conditions of the Galactic disc.

SS 433: a phenomenon imitating a Wolf-Rayet star
We present mid-infrared (2-12 μm) spectra of the microquasar SS 433obtained with the Infrared Space Observatory (spectroscopic mode ofISOPHOT and ISOCAM). We compare them to the spectra of four Wolf-Rayetstars: WR 78, WR 134, WR 136, and WR 147 in the same wavelength range.The mid-infrared spectrum of SS 433 mainly shows ion{H}{i} andion{He}{i} emission lines and is very similar to the spectrum of WR 147,a WN8(h)+B0.5V binary. The 2-12 μm continuum emission of SS 433corresponds to optically thin and partially optically thick free-freeemission, from which we calculate a mass loss rate of 2{-}3×10-4 M_ȯ yr-1 if the wind is homogeneousand a third of these values if it is clumped. This is consistent with astrong stellar wind from a WN star. However, following recent studiesconcluding that the mass donor star of SS 433 is not a Wolf-Rayet star,we propose that this strong wind out flows from a geometrically thickenvelope of material that surrounds the compact object like a stellaratmosphere, imitating the Wolf-Rayet phenomenon. This wind could alsowrap the mass donor star, and at larger distances ( 40 AU), it mightform a dust envelope from which the thermal emission, detected withISOPHOT at 25 μm and 60 μm, would originate. This wind alsoprobably feeds the material that is ejected in the orbital plane of thebinary system and that forms the equatorial outflow detected in radio atdistances >100 AU.

Evolution of X-ray emission from young massive star clusters
The evolution of X-ray emission from young massive star clusters ismodelled, taking into account the emission from the stars as well asfrom the cluster wind. It is shown that the level and character of thesoft (0.2-10 keV) X-ray emission change drastically with cluster age andare tightly linked with stellar evolution. Using the modern X-rayobservations of massive stars, we show that the correlation betweenbolometric and X-ray luminosity known for single O stars also holds forO+O and (Wolf-Rayet) WR+O binaries. The diffuse emission originates fromthe cluster wind heated by the kinetic energy of stellar winds andsupernova explosions. To model the evolution of the cluster wind, themass and energy yields from a population synthesis are used as input toa hydrodynamic model. It is shown that in a very young cluster theemission from the cluster wind is low. When the cluster evolves, WRstars are formed. Their strong stellar winds power an increasing X-rayemission of the cluster wind. Subsequent supernova explosions pump thelevel of diffuse emission even higher. Clusters at this evolutionarystage may have no X-ray-bright stellar point sources, but a relativelyhigh level of diffuse emission. A supernova remnant may become adominant X-ray source, but only for a short time interval of a fewthousand years. We retrieve and analyse Chandra and XMM-Newtonobservations of six massive star clusters located in the LargeMagellanic Cloud (LMC). Our model reproduces the observed diffuse andpoint-source emission from these LMC clusters, as well as from theGalactic clusters Arches, Quintuplet and NGC 3603.

A new Wolf-Rayet star and its ring nebula: PCG11
In a search for new Galactic planetary nebulae from our systematic scansof the Anglo-Australian Observatory/United Kingdom Schmidt Telescope(AAO/UKST) Hα Survey of the Southern Galactic Plane, we haveidentified a Population I Wolf-Rayet star of type WN7h associated withan unusual ring nebula that has a fractured rim. We present imagery inHα, the 843-MHz continuum from the Molonglo Observatory SynthesisTelescope (MOST), the mid-infrared from the Midcourse Space Experiment(MSX), and confirmatory optical spectroscopy of the character of thenebula and of its central star. The inner edge of the Hα shellshows gravitational instabilities with a well-defined wavelength aroundits complete circumference.

An Atlas of Far-Ultraviolet Spectra of Wolf-Rayet Stars from the FUSE Satellite
We present an atlas of far-ultraviolet spectra of 21 Wolf-Rayet (WR)stars in the Galaxy and Large and Small Magellanic Clouds, secured withthe Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. The datacover the wavelength range of 912-1190 Å at a spectral resolutionof 0.1 Å and span examples of most subtypes in the WN and WCsequences. We discuss the FUV spectral morphology of the different WRsequences, emphasizing the wide range of ions and chemical speciesexhibiting well-developed P Cygni profiles and emission lines in thiswavelength range. For WN stars the relative strengths of C IV/C III, NIII/N II, P V/P IV, and Si IV/Si III show a decrease in strength of thehigh ions from WN3 to WN11 complemented by an increase in the lower ionsat later types. The ``super ions'' of O VI and S VI are consideredphotoionized wind features for WN3-WN6 stars, probably the result ofAuger ionization in WN7-WN9 stars, and probably absent at WN10-WN11. TheWN5h star Sk 41 in the SMC shows relatively weaker features, which canbe ascribed to the effects of a global galaxy metal deficiency. For theWC stars, a similar pattern of wind ionization-linked strengths in theemissions and P Cygni profiles is present, particularly evident in therelative strengths of lines in P V, S IV, Si IV, and Si III. O VI, and SVI features are only seen in the earliest WC subtypes. The high carbonabundance in WC stars is reflected by the presence of strong C IV and CIII lines throughout the sequence. We present new estimates of the windterminal velocities from measurements of saturated absorption componentsobserved in a wide range of I.P. species. Considerable revisions tov&infy; for the WN3 and WN5 (SMC) stars in our sample and,in particular for the WN10 and WN11 stars are found. The latter make useof the unique availability of the N II resonance line in the FUSEwaveband.Based on observations made with the NASA-CNES-CSA Far UltravioletSpectroscopic Explorer. FUSE is operated for NASA by The Johns HopkinsUniversity under NASA contract NAS5-32985.

Kinematical Structure of Wolf-Rayet Winds. II. Internal Velocity Scatter in WN Stars
The shortward edge of the absorption core velocities - v_black asdetermined from low resolution archived IUE spectra from the INESdatabase are presented for three P Cyg profiles of NV 1240, HeII 1640and NIV 1720 for 51 Galactic and 64 LMC Wolf-Rayet stars of the WNsubtype. These data, together with v_black of CIV 1550 line presented inNiedzielski and Skorzynski (2002) are discussed. Evidences are presentedthat v_black of CIV 1550 rarely displays the largest wind velocity amongthe four lines studied in detail and therefore its application as anestimator of the terminal wind velocity in WN stars is questioned. Anaverage v_black of several lines is suggested instead but it is pointedout that v_black of HeII 1640 usually reveals the highest observablewind velocity in Galactic and LMC WN stars. It is shown that thestratification strength decreases from WNL to WNE stars and that for WNLstars there exists a positive relation between v_black and theIonization Potential. The velocity scatter between v_black obtained fromdifferent UV lines is found to correlate well with the X-ray luminosityof single WN stars (correlation coefficient R=0.82 for the data obtainedfrom the high resolution IUE spectra) and therefore two clumpy windmodels of single WN stars are presented that allow the velocity scatterto persist up to very large distances from the stellar surface (r approx500-1000 R_*). These models are used to explain the specific features ofsingle WN stars like broad absorption troughs of strong lines havingdifferent v_black, X-ray fluxes, IR/radio continua and stratificationrelations.

Radio continuum observations of massive stars in open cluster NGC 6231 and the Sco OB1 association
We present results of the Australia Telescope Compact Array (ATCA) radiocontinuum observations of massive stars in the Sco OB1 association. Most stars detected in the program show spectral indices lower thanvalue expected from thermal free-free emission.

Improved Hipparcos Parallaxes of Coma Berenices and NGC 6231
A method to reprocess the Hipparcos Intermediate Astrometry Data thatreduces the propagation of the along-scan spacecraft attitude errors wasdeveloped and successfully used to obtain a more consistent parallax ofthe Pleiades (Makarov, published in 2002). The same technique is usednow to correct the Hipparcos parallaxes of the Coma Berenices and NGC6231 open clusters, which are also in error. The new mean parallax ofComa is 12.40+/-0.17 mas (against previously 11.43 mas) and of NGC 62311.7+/-0.4 mas (against previously -0.8 mas). The new data for Coma arein excellent agreement with the pre-Hipparcos main-sequence fittingestimates. All six members of NGC 6231 that have negative parallaxes inHipparcos obtain positive parallaxes. These results suggest that themain source of astrometric error has been correctly identified, and thata more accurate Hipparcos catalog can be computed.

Kinematical Structure of Wolf-Rayet Winds. I.Terminal Wind Velocity
New terminal wind velocities for 164 Wolf-Rayet stars (from the Galaxyand LMC) based on PCyg profiles of lambda1550 CIV resonance line werederived from the archive high and low resolution IUE spectra availableform the INES database. The high resolution data on 59 WR stars (39 fromthe Galaxy and 20 from LMC) were used to calibrate the empiricalrelation lambda_min^Abs- lambda_peak^Emis vs terminal wind velocity,which was then used for determinations of the terminal wind velocitiesfrom the low resolution IUE data. We almost doubled the previous mostextended sample of such measurements. Our new measurements, based onhigh resolution data, are precise within 5-7%. Measurements, based onthe low resolution spectra have the formal errors of approx 40-60%. Acomparison of the present results with other determinations suggestshigher precision of approx 20%. We found that the terminal windvelocities for the Galactic WC and WN stars correlate with the WRspectral subtype. We also found that the LMC WN stars have winds slowerthan their Galactic counterparts, up to two times in the case of the WNEstars. No influence of binarity on terminal wind velocities was found.Our extended set of measurements allowed us to test application of theradiation driven wind theory to the WR stars. We found that, contrary toOB stars, terminal wind velocities of the WR stars correlate only weaklywith stellar temperature. We also note that the terminal to escapevelocity ratio for the WR stars is relatively low: 2.55 pm 1.14 for theGalactic WN stars and 1.78 pm 0.70 for the Galactic WCs. This ratiodecreases with temperature of WR stars, contrary to what is observed inthe case of OB stars. The presented results show complex influence ofchemical composition on the WR winds driving mechanism efficiency. Ourkinematical data on WR winds suggest evolutionary sequence: WNL -->WNE --> WCE --> WCL.

A 2.4-12 mu m spectrophotometric study with ISO of Cygnus X-3 in quiescence
We present mid-infrared spectrophotometric results obtained with the ISOon the peculiar X-ray binary Cygnus X-3 in quiescence, at orbital phases0.83 to 1.04. The 2.4-12 mu m continuum radiation observed withISOPHOT-S can be explained by thermal free-free emission in an expandingwind with, above 6.5 mu m, a possible additional black-body componentwith temperature T ~ 250 K and radius R ~ 5000 Rsun at 10kpc, likely due to thermal emission by circumstellar dust. The observedbrightness and continuum spectrum closely match that of the Wolf-Rayetstar WR 147, a WN8+B0.5 binary system, when rescaled at the same 10 kpcdistance as Cygnus X-3. A rough mass loss estimate assuming a WN windgives ~ 1.2 x 10-4 Msun yr-1. A line at~ 4.3 mu m with a more than 4.3 sigma ma detection level, and with adereddened flux of 126 mJy, is interpreted as the expected He I 3p-3sline at 4.295 μm, a prominent line in the WR 147 spectrum. Theseresults are consistent with a Wolf-Rayet-like companion to the compactobject in Cyg X-3 of WN8 type, a later type than suggested by earlierworks. Based on observations with ISO, an ESA project with instrumentsfunded by ESA Member States (especially the PI countries: France,Germany, The Netherlands and the UK) and with the participation of ISASand NASA.

The VIIth catalogue of galactic Wolf-Rayet stars
The VIIth catalogue of galactic PopulationI Wolf-Rayet stars providesimproved coordinates, spectral types and /bv photometry of known WRstars and adds 71 new WR stars to the previous WR catalogue. This censusof galactic WR stars reaches 227 stars, comprising 127 WN stars, 87 WCstars, 10 WN/WC stars and 3 WO stars. This includes 15 WNL and 11 WCLstars within 30 pc of the Galactic Center. We compile and discuss WRspectral classification, variability, periodicity, binarity, terminalwind velocities, correlation with open clusters and OB associations, andcorrelation with Hi bubbles, Hii regions and ring nebulae. Intrinsiccolours and absolute visual magnitudes per subtype are re-assessed for are-determination of optical photometric distances and galacticdistribution of WR stars. In the solar neighbourhood we find projectedon the galactic plane a surface density of 3.3 WR stars perkpc2, with a WC/WN number ratio of 1.5, and a WR binaryfrequency (including probable binaries) of 39%. The galactocentricdistance (RWR) distribution per subtype shows RWRincreasing with decreasing WR subtype, both for the WN and WC subtypes.This RWR distribution allows for the possibility ofWNE-->WCE and WNL-->WCL subtype evolution.

Wolf-Rayet Stars and Relativistic Objects: Distinctions between the Mass Distributions in Close Binary Systems
The observed properties of Wolf-Rayet stars and relativistic objects inclose binary systems are analyzed. The final masses M CO f for thecarbon-oxygen cores of WR stars in WR + O binaries are calculated takinginto account the radial loss of matter via stellar wind, which dependson the mass of the star. The analysis includes new data on the clumpystructure of WR winds, which appreciably decreases the requiredmass-loss rates for the WR stars. The masses M CO f lie in the range (12)M ȯ (20 44)M ȯ and have a continuous distribution. Themasses of the relativistic objects M x are 1 20M ȯ and have abimodal distribution: the mean masses for neutron stars and black holesare 1.35 ± 0.15M ȯ and 8 10M ȯ, respectively, with agap from 2 4M ȯ in which no neutron stars or black holes areobserved in close binaries. The mean final CO-core mass is &$/line M _{CO}(f) = 7.4 - 10.3M_ ȯ$; , close to the mean mass for the black holes. This suggests that it isnot only the mass of the progenitor that determines the nature of therelativistic object, but other parameters as well-rotation, magneticfield, etc. One SB1R Wolf-Rayet binary and 11 suspected WR + C binariesthat may have low-mass companions (main-sequence or subgiant M-A stars)are identified; these could be the progenitors of low-mass X-raybinaries with neutron stars and black holes.

Gas—Dust Shells around Some Early-Type Stars with an IR Excess (of Emission)
The results of an investigation of IR (IRAS) observations of 58O—B—A—F stars of different luminosity classes, whichare mainly members of various associations, are presented. The colorindices of these stars are determined and two-color diagrams areconstructed. The emission excesses at 12 and 25 mm (E 12 and E 25) arealso compared with the absorption A1640 of UV radiation. It is concludedthat 24 stars (of the 58 investigated) are disk systems of the Vegatype, to which Vega = N 53 also belongs. Eight known stars of the Vegatype are also given in the figures for comparison. The remaining 34stars may have gas—dust shells and/or shell—disks. The IRemission excesses of the 34 investigated stars and 11 comparison stars(eight of them are Be-Ae stars) are evidently due both to thermalemission from grains and to the emission from free—freetransitions of electrons in the gas—dust shells of these stars.

Catalogue of Apparent Diameters and Absolute Radii of Stars (CADARS) - Third edition - Comments and statistics
The Catalogue, available at the Centre de Données Stellaires deStrasbourg, consists of 13 573 records concerning the results obtainedfrom different methods for 7778 stars, reported in the literature. Thefollowing data are listed for each star: identifications, apparentmagnitude, spectral type, apparent diameter in arcsec, absolute radiusin solar units, method of determination, reference, remarks. Commentsand statistics obtained from CADARS are given. The Catalogue isavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcar?J/A+A/367/521

X-ray Nova Binary Systems
The physical properties of X-ray novae as close binary systems areanalysed. Observational data in X-ray, UV, optical, IR and radio rangesare summarized. Modern theoretical considerations of the problem ofX-ray novae, taking into account some new ideas and results, aredescribed. Properties of optical stars in X-ray novae are analysed. Dataabout the masses of black holes in X-ray binary systems are summarized.Possible evolutionary links between WR stars in close binary systems andX-ray novae are analysed.

The OB Zoo: A Digital Atlas of Peculiar Spectra
A digital atlas of 20 high-luminosity, peculiar OB spectra in the3800-4900 Å range is presented. The atlas is organized anddiscussed in terms of the following four categories: WN-A or WNL stars,OB Iape or very late WN (WNVL) stars, iron stars, and B-supergiantluminous blue variables (LBVs). Several objects in the earliercategories are also active or quiescent LBVs. Some (but not all) ofthese objects have been well studied, and extensive references areprovided, as are comprehensive spectral-line identifications. Severalnew morphological relationships among the objects have been recognizedthrough this presentation. In particular, attention is drawn to theoccurrence of spatial pairing between nearly identical, unusual spectra,which may have implications for a particular mode of massive-starformation. This small sample includes one or both members of at leastfive such pairs. Physical explanations of these peculiar, likelytransitional spectra and the relationships among them are essential fora complete understanding of massive stellar evolution.

Non-thermal emission in Wolf-Rayet stars: are massive companions required?
We examine the radio spectral indices of 23 Wolf-Rayet (WR) stars toidentify the nature of their radio emission. We identify nine systems asnon-thermal emitters. In seven of these systems the non-thermal emissiondominates the radio spectrum, while in the remaining two it is ofcomparable strength to the thermal, stellar wind emission, giving`composite' spectra. Among these nine systems, seven have knownspectroscopic or visual binary companions. The companions are allmassive O or early B-type stars, strongly supporting a connectionbetween the appearance of non-thermal emission in WR stars and thepresence of a massive companion. In three of these binaries, the originof non-thermal emission in a wind-collision region between the stars hasbeen well established in earlier work. The binary systems that exhibitonly thermal emission are all short-period systems where awind-collision zone is deep within the opaque region of the stellar windof the WR star. To detect non-thermal emission in these systems requiresoptically thin lines of sight to the wind-collision region.

Exospheric models for the X-ray emission from single Wolf-Rayet stars
We review existing ROSAT detections of single Galactic Wolf-Rayet (WR)stars and develop wind models to interpret the X-ray emission. The ROSATdata, consisting of bandpass detections from the ROSAT All-Sky Survey(RASS) and some pointed observations, exhibit no correlations of the WRX-ray luminosity (LX) with any star or wind parameters ofinterest (e.g. bolometric luminosity, mass-loss rate or wind kineticenergy), although the dispersion in the measurements is quite large. Thelack of correlation between X-ray luminosity and wind parameters amongthe WR stars is unlike that of their progenitors, the O stars, whichshow trends with such parameters. In this paper we seek to (i) test byhow much the X-ray properties of the WR stars differ from the O starsand (ii) place limits on the temperature TX and fillingfactor fX of the X-ray-emitting gas in the WR winds. Adoptingempirically derived relationships for TX and fXfrom O-star winds, the predicted X-ray emission from WR stars is muchsmaller than observed with ROSAT. Abandoning the TX relationfrom O stars, we maximize the cooling from a single-temperature hot gasto derive lower limits for the filling factors in WR winds. Althoughthese filling factors are consistently found to be an order of magnitudegreater than those for O stars, we find that the data are consistent(albeit the data are noisy) with a trend of fx ∝(Mν&infy;)-1 in WR stars, as is also the casefor O stars.

The Structure of Wolf-Rayet Winds. II. Observations of Ionization Stratification in the WN Subtype
Motivated by the question of the importance of ionization stratificationin solving the ``momentum problem'' of Wolf-Rayet stellar winds, we havechosen a sample of 14 WN stars for a systematic study. We performedmeasurements of the emission line widths on ultraviolet, optical, andinfrared spectra to obtain data spanning a large range of ionizationpotentials. We provide extensive tables of these measurements as well asline profile classifications. The presence of ionization stratificationin the wind should result in a correlation between ionization potentialand line width. We find most of the winds to be stratified and discussthe level of stratification found in each star. To test the importanceof ionization stratification to efficient radiation-to-wind momentumtransfer, we compare our empirically measured stratification strengthswith two sets of theoretical performance numbers and give thecorrelation statistics in each case.

Mass-loss rates of Wolf-Rayet stars as a function of stellar parameters
Clumping-corrected mass-loss rates of 64 Galactic Wolf-Rayet (WR) starsare used to study the dependence of mass-loss rates, momentum transferefficiencies and terminal velocities on the basic stellar parameters andchemical composition. The luminosities of the WR stars have beendetermined either directly from the masses, using the dependence of L onmass predicted by stellar evolution theory, or they were determined fromthe absolute visual magnitudes and the bolometric corrections. For thispurpose we improved the relation between the bolometric correction andthe spectral subclass. (1) The momentum transfer efficiencies η(i.e. the ratio between the wind momentum loss and radiative momentumloss) of WR stars are found to lie in the range of 1.4 to 17.6, with themean value of 6.2 for the 64 program stars. Such values can probably beexplained by radiative driving due to multiple scattering of photons ina WR wind with an ionization stratification. However, there may be aproblem in explaining the driving at low velocities. (2) We derived thelinear regression relations for the dependence of the terminal velocity,the momentum transfer efficiency and the mass-loss rates on luminosityand chemical composition. We found a tight relation between the terminalvelocity of the wind and the parameters of the hydrostatic core. Thisrelation enables the determination of the mass of the WR stars fromtheir observed terminal velocities and chemical composition with anaccuracy of about 0.1 dex for WN and WC stars. Using evolutionary modelsof WR stars, the luminosity can then be determined with an accuracy of0.25 dex or better. (3) We found that the mass-loss rates(&mathaccent "705Frelax dot;) of WR stars depend strongly onluminosity and also quite strongly on chemical composition. For thecombined sample of WN and WC stars we found that &mathaccent"705Frelax dot; in Mȯyr-1 can be expressed as&mathaccent "705Frelax dot; ≃ 1.0 ×10-11(L/L ȯ)1.29Y1.7Z0.5 (1) with an uncertainty of σ = 0.19dex (4) The new mass-loss rates are significantly smaller than adoptedin evolutionary calculations, by about 0.2 to 0.6 dex, depending on thecomposition and on the evolutionary calculations. For H-rich WN starsthe new mass-loss rates are 0.3 dex smaller than adopted in theevolutionary calculations of Meynet et al. (1994). (5) The lowermass-loss rates, derived in this paper compared to previously adoptedvalues, facilitate the formation of black holes as end points of theevolution of massive stars. However they might create a problem inexplaining the observed WN/WC ratios, unless rotational mixing ormass-loss due to eruptions is important.

Wolf-Rayet stars before and after Hipparcos.
Not Available

Quantitative Near-Infrared Spectroscopy of OF and WNL Stars
From new high signal-to-noise ratio (S/N) 1-2.2 μm spectroscopy ofnine extreme early-type stars-including O Iaf, O Iafpe and WN9 types-wedetermine stellar parameters from detailed atmospheric analysis andevaluate results from near-IR analogues of well-known spectraldiagnostics in the optical. We conclude that accurate stellar parameterscan be measured from near-IR spectroscopy alone, an analysis techniqueimportant to studies of luminous stars in the Galactic center and othergalaxies. Derived stellar parameters-mass-loss rates, luminosities,surface abundances, temperatures-show good agreement between optical andnear-IR analyses, provided that IR data are of sufficient spectralresolution (R>2000) and S/N (S/N>30). Wind velocities derived fromHe I 1.0830 μm are consistent with those from ultraviolet P Cygniprofiles. Temperatures 200-1300 K systematically lower are determinedfrom the near-IR diagnostics, a difference not significant indetermining the stellar properties of these objects; which set ofspectral lines provides the more accurate physical parameters-optical orIR-cannot at present be ascertained. The strength of He I 2.0581 μmis very sensitive to the extreme ultraviolet energy distribution whereline blanketing by heavy elements plays an important role; this lineshould not on its own be considered a reliable temperature diagnostic.The three peculiar, extreme emission-line stars-the O Iafpe stars HD152386, HD 152408, and HDE 313846-are more similar in both morphologicaland physical characteristics to WNL-type Wolf-Rayet stars than to normalO Iaf supergiants and should be classified as W-R. Their classificationshould be WN9ha, in which they remain a unique subgroup.

A Second Catalog of Orbiting Astronomical Observatory 2 Filter Photometry: Ultraviolet Photometry of 614 Stars
Ultraviolet photometry from the Wisconsin Experiment Package on theOrbiting Astronomical Observatory 2 (OAO 2) is presented for 614 stars.Previously unpublished magnitudes from 12 filter bandpasses withwavelengths ranging from 1330 to 4250 Å have been placed on thewhite dwarf model atmosphere absolute flux scale. The fluxes wereconverted to magnitudes using V=0 for F(V)=3.46x10^-9 ergs cm^-2 s^-1Å^-1, or m_lambda=-2.5logF_lambda-21.15. This second catalogeffectively doubles the amount of OAO 2 photometry available in theliterature and includes many objects too bright to be observed withmodern space observatories.

ICCD Speckle Observations of Binary Stars. XXII. A Survey of Wolf-Rayet Starsfor Close Visual Companions
We present the results of a speckle interferometric survey for closevisual companions, mainly among 29 of the apparently brightestWolf-Rayet (W-R) stars. Only one target, WR 48 = theta Mus, was resolvedas a close astrometric binary (with a separation of 46+/-9 mas). Thissystem is probably a triple comprising a short-period W-R binary plus adistant O supergiant companion. Although our binary detection fractionis low, it is not an unexpected result given the selection effects thatmilitate against easy detection of binaries. New, higher resolutionobservations will almost certainly increase the fraction of binaries.There are four known binaries among the six W-R stars in our sample thathave nonthermal radio emission, and this connection supports the ideathat the nonthermal emission originates in the wind-wind collisionbetween components.

Five-colour photometry of OB-stars in the Southern Hemisphere
Observations of OB-stars, made in 1959 and 1960 at the Leiden SouthernStation near Hartebeespoortdam, South Africa, with the VBLUW photometerattached to the 90 cm light-collector, are given in this paper. They arecompared with photometry obtained by \cite[Graham (1968),]{gra68}\cite[Walraven & Walraven (1977),]{wal77} \cite[Lub & Pel(1977)]{lub77} and \cite[Van Genderen et al. (1984).]{gen84} Formulaefor the transformation of the present observations to those of\cite[Walraven & Walraven (1977)]{wal77} and \cite[Lub & Pel(1977)]{lub77} are given. Table 4 is only available in electronic format the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) orvia http://cdsweb.u-strasbg.fr/Abstract.html

Observational constraints on the efficiency of acceleration in the optically thin parts of Wolf-Rayet winds
Wolf-Rayet stars have such strong winds that their inner regions areoptically thick, preventing us from seeing the hydrostatic stellarcores. One might expect considerable acceleration of the wind to occurin the optically thick part. However, we show empirically that at least50%, and in some cases up to 100%, of the wind's acceleration occurs inthe optically thin part of the WR wind.

A spectropolarimetric survey of northern hemisphere Wolf-Rayet stars
We present a homogeneous, high signal-to-noise spectropolarimetricsurvey of 16 northern hemisphere Wolf-Rayet (WR) stars. A reduction inpolarization at emission-line wavelengths - the `line effect' - isidentified in four stars: WRs 134, 137, 139, and 141. The magnitude ofthe effect in WR 139 (V444 Cyg) is variable, while WR 136, previouslyreported to show the line effect, does not show it in our data. Assumingthe line effect generally to arise from axisymmetric distortions ofstellar winds, we show that a model in which all WRs have the sameintrinsic (equator-on) polarization, with the observed variations solelya result of inclination effects, is inconsistent with the observations.A model in which the intrinsic polarizations are uniformly distributedis more plausible, but best-fitting results are obtained if thedistribution of polarizations is biased towards small values, with only~20 per cent of stars having intrinsic polarizations greater than ~0.3per cent. Radiative transfer calculations indicate that the observedcontinuum polarizations can be matched by models with equator:poledensity ratios of 2-3. The model spectra have electron-scattering wingsthat are significantly stronger than observed (in both intensity andpolarized flux), confirming that the winds of stars showing intrinsicpolarization must be clumped on small scales as well as being distortedon large scales. We combine the results of our survey with observationsfrom the literature to give a sample of 29 stars which have bothaccurate spectropolarimetric observations and physical parametersderived from standard-model analyses. We find that the line-effect starsare clustered at high M, L in the luminosity-mass-loss rate plane(although they are unexceptional in the terminal velocity-subtype andthe surface-mass-flux-temperature planes). The mass-loss rates derivedfrom radio-continuum observations for these stars are in good accordwith the results of optical emission-line analyses, suggesting that (i)the wind structure of line-effect stars has a density contrast which iseffectively constant with radius, and (ii) the high M values may beartefacts of large-scale wind structure. Assuming that observedspectroscopic and photometric variability of the line-effect stars isrelated to the WR rotation period, we compute equatorial rotationvelocities. These velocities correspond to ~10 per cent of the corebreakup rates, and may be large enough to produce significantwind-compression effects according to the models of Ignace, Cassinelli& Bjorkman.

The effective temperatures of hots stars
We review the effective temperature scale of hot (>= 10 kK) stars,including results from direct, continuum and ionization equilibriumtechniques. We discuss the impact of recent developments in theoreticalmodel atmospheres for OB subdwarfs, dwarfs and supergiants, white dwarfsand Wolf Rayet stars and present a revised Teff scale for OBstars. Direct techniques coupled with Kurucz model atmospheres allowStroemgren photometry to be used as a sensitive Teffindicator for normal stars with Teff <= 25 kK. ReliableTeff determinations for hotter, low surface gravity andH-deficient stars require sophisticated ionization equilibriumtechniques, generally considering non-LTE and line-blanketing effects.

UBV beta Database for Case-Hamburg Northern and Southern Luminous Stars
A database of photoelectric UBV beta photometry for stars listed in theCase-Hamburg northern and southern Milky Way luminous stars surveys hasbeen compiled from the original research literature. Consisting of over16,000 observations of some 7300 stars from over 500 sources, thisdatabase constitutes the most complete compilation of such photometryavailable for intrinsically luminous stars around the Galactic plane.Over 5000 stars listed in the Case-Hamburg surveys still lackfundamental photometric data.

Dust shells around certain early-type stars with emission lines.
Not Available

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Scorpius
Right ascension:16h52m19.10s
Declination:-41°51'16.0"
Apparent magnitude:6.49
Distance:10000000 parsecs
Proper motion RA:-2.8
Proper motion Dec:-1.5
B-T magnitude:6.759
V-T magnitude:6.506

Catalogs and designations:
Proper Names
HD 1989HD 151932
TYCHO-2 2000TYC 7876-2659-1
USNO-A2.0USNO-A2 0450-25840695
BSC 1991HR 6249
HIPHIP 82543

→ Request more catalogs and designations from VizieR