Home     Getting Started     New Pictures     Picture of the Day     Blog New!     Login  

HD 198949


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Rotational velocities of A-type stars in the northern hemisphere. II. Measurement of v sin i
This work is the second part of the set of measurements of v sin i forA-type stars, begun by Royer et al. (\cite{Ror_02a}). Spectra of 249 B8to F2-type stars brighter than V=7 have been collected at Observatoirede Haute-Provence (OHP). Fourier transforms of several line profiles inthe range 4200-4600 Å are used to derive v sin i from thefrequency of the first zero. Statistical analysis of the sampleindicates that measurement error mainly depends on v sin i and thisrelative error of the rotational velocity is found to be about 5% onaverage. The systematic shift with respect to standard values fromSlettebak et al. (\cite{Slk_75}), previously found in the first paper,is here confirmed. Comparisons with data from the literature agree withour findings: v sin i values from Slettebak et al. are underestimatedand the relation between both scales follows a linear law ensuremath vsin inew = 1.03 v sin iold+7.7. Finally, thesedata are combined with those from the previous paper (Royer et al.\cite{Ror_02a}), together with the catalogue of Abt & Morrell(\cite{AbtMol95}). The resulting sample includes some 2150 stars withhomogenized rotational velocities. Based on observations made atObservatoire de Haute Provence (CNRS), France. Tables \ref{results} and\ref{merging} are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.125.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/393/897

Research Note Hipparcos photometry: The least variable stars
The data known as the Hipparcos Photometry obtained with the Hipparcossatellite have been investigated to find those stars which are leastvariable. Such stars are excellent candidates to serve as standards forphotometric systems. Their spectral types suggest in which parts of theHR diagrams stars are most constant. In some cases these values stronglyindicate that previous ground based studies claiming photometricvariability are incorrect or that the level of stellar activity haschanged. Table 2 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/367/297

Radial velocities of HIPPARCOS southern B8-F2 type stars
Radial velocities have been determined for a sample of B8-F2 type starsobserved by the Hipparcos satellite. Observations were obtained withinthe framework of an ESO key-program. Radial velocities have beenmeasured using a cross-correlation method, the templates being a grid ofsynthetic spectra. The obtained precision depends on effectivetemperature and projected rotational velocity of the star as well as ona possible asymmetry of the correlation peak generally due to secondarycomponents. New spectroscopic binaries have been detected from theseasymmetries and the variability of the measured radial velocity.Simulations of binary and triple systems have been performed. Forbinaries our results have been compared with Hipparcos binary data.Adding the variable radial velocities, the minimum binary fraction hasbeen found 60% for physical systems. Radial velocities have beendetermined for 581 B8-F2 stars, 159 being new. Taking into accountpublished radial velocities, 39% south A-type stars with V magnitudelower than 7.5 have a radial velocity. Based on observations obtained atthe European Southern Observatory (ESO, La Silla, Chile) and on datafrom the ESA Hipparcos astrometry satellite.}\fnmsep \thanks{Tables 7, 8and 9 are only available in electronic form at the CDS via anonymous ftpto cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

The Angular Momentum of Main Sequence Stars and Its Relation to Stellar Activity
Rotational velocities are reported for intermediate-mass main sequencestars it the field. The measurements are based on new, high S/N CCDspectra from the Coudé Feed Telescope of the Kitt Peak NationalObservatory. We analyze these rotation rates for a dependence on bothmass and age. We compare the average rotation speeds of the field starswith mean velocities for young stars in Orion, the Alpha Persei cluster,the Pleiades, and the Hyades. The average rotation speeds of stars moremassive than $\sim1.6$ \msun\experience little or no change during theevolutionary lifetimes of these stars on the zero age main sequence orwithin the main sequence band. Less massive stars in the range betwee n1.6\msun\ and 1.3\msun\ also show little decline in mean rotation ratewhile they are on the main sequence, and at most a factor of 2 decreasein velocity as they evolve off the main sequence. The {\it e}-foldingtime for the loss of angular momentum b y the latter group of stars isat least 1--2 billion years. This inferred characteristic time scale forspindown is far longer than the established rotational braking time forsolar-type stars with masses below $\sim1.3$ \msun. We conclude from acomparison of the trends in rotation with trends in chromospheric andcoronal activity that the overall decline in mean rotation speed alongthe main sequence, from $\sim2$ \msun\ down to $\sim1.3$ \msun, isimposed during the pre-main sequence phase of evolution, and that thispattern changes little thereafter while the star resides on the mainsequence. The magnetic activity implicated in the rotational spindown ofthe Sun and of similar stars during their main sequence lifetimes mus ttherefore play only a minor role in determining the rotation rates ofthe intermediate mass stars, either because a solar-like dynamo is weakor absent, or else the geometry of the magnetic field is appreciablyless effective in removing angular momentu m from these stars. (SECTION:Stars)

The Gronbech-Olsen photometry: Transformations to a Hyades-Coma system
In this paper, we consider the zero points of six sets of Stromgren-betaphotometry. The color-index system to which our results are referred isa 'Hyades-Coma' system composed of photometry by Crawford and Perry(1966) and Crawford and Barnes (1969). For V magnitudes, we usemeasurements by Taylor and Joner (1992). Our results are as follows. (1)The zero points of photometry by Gronbech and Olsen (1976, 1977) areoffset from those of the Hyades-Coma system. The offsets can amount toseveral mmag; they appear for V and all color indices except beta, anddepend on right ascension and (usually) declination. (2) These offsetscan be applied to photometry by Stetson (1991), who reduced his resultsto the Gronbech-Olsen system. After correction, Stetson's results for aset of 'transfer stars' differ from comparable data published byCrawford and Barnes (1970). (3) A direct comparison of the transferstars to the Hyades yields consistency between the Hyades-Coma andCrawford-Barnes zero points (for the transfer stars specifically). Thisresult supports a conclusion drawn by Taylor and Joner, and suggeststhat here is some problem with the zero points of Stetson'stransfer-star data. (4) From Stetson's corrected data, one finds thatthe Crawford-Perry zero points for the Hyades are consistent with theCrawford-Barnes zero points for Coma. This result agrees with aconclusion drawn by Taylor and Joner from their own data, and suggeststhat the problem postulated for Stetson's transfer-star data does notextend to his results for the Hyades and Coma.

The Relation between Rotational Velocities and Spectral Peculiarities among A-Type Stars
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995ApJS...99..135A&db_key=AST

Ca II H and K Filter Photometry on the UVBY System. II. The Catalog of Observations
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995AJ....109.2828T&db_key=AST

Early type high-velocity stars in the solar neighborhood. IV - Four-color and H-beta photometry
Results are presented from photometric obaservations in the Stromgrenuvby four-color and H-beta systems of early-type high-velocity stars inthe solar neighborhood. Several types of photometrically peculiar starsare selected on the basis of their Stromgren indices and areprovisionally identified as peculiar A stars, field horizontal-branchstars, metal-poor stars near the Population II and old-disk turnoffs,metal-poor blue stragglers, or metallic-line A stars. Numerousphotometrically normal stars were also found.

Ca II H and K filter photometry on the UVBY system. I - The standard system
A fifth filter (fwhm = 90 A) centered on Ca II H and K has beendeveloped for use with the standard uvby system. The filter, called Ca,is designed primarily for applications to metal-poor dwarfs and redgiants, regions where the uvby metallicity index, m(l), loses somesensitivity. An index, hk, is defined by replacing v in m(l) by Ca. Theeffects of interstellar extinction on the index are modeled anddemonstrated to be modest and relatively insensitive to spectral type.Observations of V, (b-y), and hk for 163 primary standards are detailedand transformed to the standard V and (b-y) system. A qualitativeanalysis using only the primary standards indicates that hk is moresensitive than m(l) over the regions of interest by about a factor of 3.

Magnetic structure in cool stars. XV - The evolution of rotation rates and chromospheric activity of giants
For cool giants and subgiants the observed dependence of rotationalvelocity and Ca II H and K line-core emission on color B-V isinterpreted in terms of changes in the moment of inertia by stellarevolution. Modeling of the rotational velocity during the evolution ofcool giants with masses between 2.0 and 3.0 solar masses, by taking intoaccount the change in the moment of inertia and assuming rigid-bodyrotation and conservation of angular momentum, describes the observeddecrease of v sin i with B-V. The computed evolution of the rotationalvelocity, together with the empirical relation between the Ca IIline-core emission and the rotation rate, explain the observed drop inthe Ca II line-core emission for giants at B-V = about 0.95. Forsubgiants with masses of about 1.5 solar mass, the change in the momentof inertia by itself cannot explain the observed v sin i distribution:there are indications of loss of angular momentum, presumably bymagnetic braking.

Study of the F-type 1 MK spectral types.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1975AJ.....80..637M&db_key=AST

MK Spectral Types for Some Bright F Stars
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1974PASP...86...70C&db_key=AST

Rotation of evolving A and F stars.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1972A&A....18..428D&db_key=AST

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Aquarius
Right ascension:20h53m58.40s
Declination:-06°53'23.0"
Apparent magnitude:6.44
Distance:70.522 parsecs
Proper motion RA:25.8
Proper motion Dec:-21.9
B-T magnitude:6.853
V-T magnitude:6.477

Catalogs and designations:
Proper Names
HD 1989HD 198949
TYCHO-2 2000TYC 5191-1841-1
USNO-A2.0USNO-A2 0825-18819594
BSC 1991HR 7998
HIPHIP 103154

→ Request more catalogs and designations from VizieR