Home     Getting Started     New Pictures     Picture of the Day     Blog New!     Login  

HD 203842


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Lithium abundances for early F stars: new observational constraints for the Li dilution
Aims.To investigate any correlation between Li abundances and rotationalvelocities among F-G evolved stars, we study a large sample of early Fstars from the Bright Star Catalogue (BSC), most of them classified inthe literature as giant stars.Methods.Physical parameters and Liabundances are estimated for each star, often for the first time, bycomparing observed and synthetic spectra. We analyse the position of thestars in the H-R Diagram based on Hipparcos data using stellarevolutionary tracks and we discuss their Li abundances and projectedrotational velocities.Results.Observed stars are mostly on theturnoff, with masses between 1.5 and 2.0 Mȯ. The starswith measured A(Li) abundance show high Li content, most of them withabundance near the cosmic value. The A(Li) versus V sin i diagram showsthe same trend as reported in previous studies: fast rotators (V sinigse 30 km s-1) are also stars with high Li content, whereasslow rotators present a wide range of values of A(Li), ranging from nodetected Li to the cosmic value.

Statistical Constraints for Astrometric Binaries with Nonlinear Motion
Useful constraints on the orbits and mass ratios of astrometric binariesin the Hipparcos catalog are derived from the measured proper motiondifferences of Hipparcos and Tycho-2 (Δμ), accelerations ofproper motions (μ˙), and second derivatives of proper motions(μ̈). It is shown how, in some cases, statistical bounds can beestimated for the masses of the secondary components. Two catalogs ofastrometric binaries are generated, one of binaries with significantproper motion differences and the other of binaries with significantaccelerations of their proper motions. Mathematical relations betweenthe astrometric observables Δμ, μ˙, and μ̈ andthe orbital elements are derived in the appendices. We find a remarkabledifference between the distribution of spectral types of stars withlarge accelerations but small proper motion differences and that ofstars with large proper motion differences but insignificantaccelerations. The spectral type distribution for the former sample ofbinaries is the same as the general distribution of all stars in theHipparcos catalog, whereas the latter sample is clearly dominated bysolar-type stars, with an obvious dearth of blue stars. We point outthat the latter set includes mostly binaries with long periods (longerthan about 6 yr).

Rotation and Lithium Surface Abundances, Revisited
For giants in the Hertzsprung gap, the relations betweenTeff, vsini, and lithium surface abundances arereinvestigated and compared with the relations found for Hyadesmain-sequence F stars. For the Hyades main-sequence F stars, the vsinidecrease steeply around Teff~6450 K. At the same temperaturethe lithium surface abundances show a narrow, deep dip. For most giantsthere is also a steep decrease of vsini for Teff around 6450K. At this temperature the lithium surface abundances of the giants alsodecrease steeply and remain low for Teff<6400 K. Thechanges in rotation and Li surface abundances occur over a temperatureinterval of less than 300 K, which for a 2 Msolar giantcorresponds to an age interval of about 106 yr. Thesimultaneous steep decreases of rotation velocities and Li surfaceabundances indicate that for the giants these changes are due to thesame cause, which we suggest to be deep mixing. It then seems ratherlikely that for the Hyades main-sequence F5 V stars the decrease ofrotation and Li surface abundance is also caused by deep mixing. Wesuggest that in both cases the changes are related to the merging of thehydrogen and helium convection zones.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Observational constraints for lithium depletion before the RGB
Precise Li abundances are determined for 54 giant stars mostly evolvingacross the Hertzsprung gap. We combine these data with rotationalvelocity and with information related to the deepening of the convectivezone of the stars to analyse their link to Li dilution in the referredspectral region. A sudden decline in Li abundance paralleling the onealready established in rotation is quite clear. Following similarresults for other stellar luminosity classes and spectral regions, thereis no linear relation between Li abundance and rotation, in spite of thefact that most of the fast rotators present high Li content. The effectsof convection in driving the Li dilution is also quite clear. Stars withhigh Li content are mostly those with an undeveloped convective zone,whereas stars with a developed convective zone present clear sign of Lidilution.Based on observations collected at ESO, La Silla, Chile, and at theObservatoire de Haute Provence, France, operated by the Centre Nationalde la Recherche Scientifique (CNRS).

Late-type members of young stellar kinematic groups - I. Single stars
This is the first paper of a series aimed at studying the properties oflate-type members of young stellar kinematic groups. We concentrate ourstudy on classical young moving groups such as the Local Association(Pleiades moving group, 20-150Myr), IC 2391 supercluster (35Myr), UrsaMajor group (Sirius supercluster, 300Myr), and Hyades supercluster(600Myr), as well as on recently identified groups such as the Castormoving group (200Myr). In this paper we compile a preliminary list ofsingle late-type possible members of some of these young stellarkinematic groups. Stars are selected from previously established membersof stellar kinematic groups based on photometric and kinematicproperties as well as from candidates based on other criteria such astheir level of chromospheric activity, rotation rate and lithiumabundance. Precise measurements of proper motions and parallaxes takenfrom the Hipparcos Catalogue, as well as from the Tycho-2 Catalogue, andpublished radial velocity measurements are used to calculate theGalactic space motions (U, V, W) and to apply Eggen's kinematic criteriain order to determine the membership of the selected stars to thedifferent groups. Additional criteria using age-dating methods forlate-type stars will be applied in forthcoming papers of this series. Afurther study of the list of stars compiled here could lead to a betterunderstanding of the chromospheric activity and their age evolution, aswell as of the star formation history in the solar neighbourhood. Inaddition, these stars are also potential search targets for directimaging detection of substellar companions.

Speckle Interferometry of New and Problem Hipparcos Binaries. II. Observations Obtained in 1998-1999 from McDonald Observatory
The Hipparcos satellite made measurements of over 9734 known doublestars, 3406 new double stars, and 11,687 unresolved but possible doublestars. The high angular resolution afforded by speckle interferometrymakes it an efficient means to confirm these systems from the ground,which were first discovered from space. Because of its coverage of adifferent region of angular separation-magnitude difference(ρ-Δm) space, speckle interferometry also holds promise toascertain the duplicity of the unresolved Hipparcos ``problem'' stars.Presented are observations of 116 new Hipparcos double stars and 469Hipparcos ``problem stars,'' as well as 238 measures of other doublestars and 246 other high-quality nondetections. Included in these areobservations of double stars listed in the Tycho-2 Catalogue andpossible grid stars for the Space Interferometry Mission.

Catalogue of Apparent Diameters and Absolute Radii of Stars (CADARS) - Third edition - Comments and statistics
The Catalogue, available at the Centre de Données Stellaires deStrasbourg, consists of 13 573 records concerning the results obtainedfrom different methods for 7778 stars, reported in the literature. Thefollowing data are listed for each star: identifications, apparentmagnitude, spectral type, apparent diameter in arcsec, absolute radiusin solar units, method of determination, reference, remarks. Commentsand statistics obtained from CADARS are given. The Catalogue isavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcar?J/A+A/367/521

Are metallic A-F giants evolved AM stars? Rotation and rate of binaries among giant F stars
We test the hypothesis of Berthet (1992) {be91} which foresees that Amstars become giant metallic A and F stars (defined by an enhanced valueof the blanketing parameter Delta m_2 of the Geneva photometry) whenthey evolve. If this hypothesis is right, Am and metallic A-FIII starsneed to have the same rate of binaries and a similar distribution ofvsin i. From our new spectroscopic data and from vsin i and radialvelocities in the literature, we show that it is not the case. Themetallic giant stars are often fast rotators with vsin i larger than 100kms(-1) , while the maximum rotational velocity for Am stars is about100 kms(-1) . The rate of tight binaries with periods less than 1000days is less than 30% among metallic giants, which is incompatible withthe value of 75% for Am stars - [Abt & Levy 1985] {ab85}).Therefore, the simplest way to explain the existence of giant metallic Fstars is to suggest that all normal A and early F stars might go througha short ``metallic" phase when they are finishing their life on the mainsequence. Besides, it is shown that only giant stars with spectral typecomprised between F0 and F6 may have a really enhanced Delta m_2 value,while all A-type giants seem to be normal. Based on observationscollected at Observatoire de Haute Provence (OHP), France.

The Angular Momentum of Main Sequence Stars and Its Relation to Stellar Activity
Rotational velocities are reported for intermediate-mass main sequencestars it the field. The measurements are based on new, high S/N CCDspectra from the Coudé Feed Telescope of the Kitt Peak NationalObservatory. We analyze these rotation rates for a dependence on bothmass and age. We compare the average rotation speeds of the field starswith mean velocities for young stars in Orion, the Alpha Persei cluster,the Pleiades, and the Hyades. The average rotation speeds of stars moremassive than $\sim1.6$ \msun\experience little or no change during theevolutionary lifetimes of these stars on the zero age main sequence orwithin the main sequence band. Less massive stars in the range betwee n1.6\msun\ and 1.3\msun\ also show little decline in mean rotation ratewhile they are on the main sequence, and at most a factor of 2 decreasein velocity as they evolve off the main sequence. The {\it e}-foldingtime for the loss of angular momentum b y the latter group of stars isat least 1--2 billion years. This inferred characteristic time scale forspindown is far longer than the established rotational braking time forsolar-type stars with masses below $\sim1.3$ \msun. We conclude from acomparison of the trends in rotation with trends in chromospheric andcoronal activity that the overall decline in mean rotation speed alongthe main sequence, from $\sim2$ \msun\ down to $\sim1.3$ \msun, isimposed during the pre-main sequence phase of evolution, and that thispattern changes little thereafter while the star resides on the mainsequence. The magnetic activity implicated in the rotational spindown ofthe Sun and of similar stars during their main sequence lifetimes mus ttherefore play only a minor role in determining the rotation rates ofthe intermediate mass stars, either because a solar-like dynamo is weakor absent, or else the geometry of the magnetic field is appreciablyless effective in removing angular momentu m from these stars. (SECTION:Stars)

Spectroscopic survey of delta Scuti stars. I. Rotation velocities and effective temperatures
Projected rotational velocities and effective temperatures for 68 deltaSct stars as well as 41 non-variable stars of similar spectral type andluminosity are presented here. The rotational velocities have beencalculated following the method developed in \cite[Gray (1992)]{ref38}and effective temperatures have been derived using the Balmer lineprofiles. The temperatures obtained from this method are shown to be inreasonable agreement with those calculated using the Infrared FluxMethod (IRFM) or spectrophotometric methods. This result has allowed usto use our temperatures to compare different uvby beta photometriccalibrations. We find that the calibration given by \cite[Moon \&Dworetsky (1985)]{ref72} is the most consistent. In the second part ofthis paper we have studied the relation between the pulsationalproperties (periods and amplitudes) and the physical parameters (v sin iand Teff). Where pulsation modes have been determined, thelow amplitude $\delta$ Scutis tend to be multimode (radial andnon-radial) pulsators, consistent with the theory that non-linearcoupling between modes acts to limit the amplitude in these stars. Wehave compared the distribution of v sin i for low amplitude $\delta$Scutis and non-variable stars. This shows the $\delta$ Scutis have abroader distribution in v sin i suggesting that a high rotation velocitymay favour pulsation. We find that the large amplitude delta Scuti starstend to have longer periods, cooler temperatures and lower rotationvelocities. Given that the large amplitude stars are also relativelyrare all the above are consistent with the hypothesis that these starsare more evolved (sub-giants) than the low amplitude delta Scutis (mainsequence or early post-main sequence).

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

The lithium content and other properties of F2-G5 giants in the Hertzsprung Gap
As stars of 2-5 solar mass evolve across the Hertzsprung Gap they shouldfirst deplete their surface lithium by convective dilution and then,when convection penetrates deeper, begin to bring CN processed materialto their surfaces. To investigate this process we have observed 52giants, 25 of which have known C/N ratios, for their Li abundances.After eliminating four stars that may actually be dwarfs and includingthe two components of Capella analyzed by Pilachowski and Sowell we havecompared our (Li/Fe) ratios with models of Swenson. For stars showing vsin i greater than 50 km/s we find (Li/Fe) to be unaffected by mixingfor B - V less than 0.7 as predicted. For stars cooler than B - V = 0.7both v sin i and (Li/Fe) drop to smaller values. For the sharp linedstars (v sin i less than 50 km/s) we find a drop in Li between B - V =0.45 and 0.60 which cannot be understood in terms of dilution byconvection. Various possible causes of such an early depletion ordilution of surface Li are discussed including diffusion at the base ofthe convection zone, mass loss possibly enhanced by pulsation, andmagnetic activity as in the magnetic A and B type stars. The models ofRicher & Michaud (1993) with diffusion point toward a satisfactorysolution. A few giants with low v sin i values stand out with muchhigher than expected (Li/Fe) values despite their cool effectivetemperatures. We do not understand why those stars have not depletedtheir lithium as have most giants of similar color. The correlation of(N/C) with (Li/Fe) follows expectations in so far as almost all starswith enhanced (N/C) have depleted their Li as well.

Carbon and nitrogen abundances determined from transition layer lines
The possibility of determining relative carbon, nitrogen, and siliconabundances from the emission-line fluxes in the lower transition layersbetween stellar chromospheres and coronae is explored. Observations formain-sequence and luminosity class IV stars with presumably solarelement abundances show that for the lower transition layers Em =BT-gamma. For a given carbon abundance the constants gammaand B in this relation can be determined from the C II and C IVemission-line fluxes. From the N V and S IV lines, the abundances ofthese elements relative to carbon can be determined from their surfaceemission-line fluxes. Ratios of N/C abundances determined in this wayfor some giants and supergiants agree within the limits of errors withthose determined from molecular bands. For giants, an increase in theratio of N/C at B-V of about 0.8 is found, as expected theoretically.

The Hyades supercluster in the FK5
The members of the Hyades supercluster brighter than about M(V) = + 4mag and contained in the FK5, or having nearly FK5 quality propermotions, show a convergent point of (A,D) = (6h, + 6.5 deg). The Hyadescluster stars in the FK5 have a mean distance of 46.7 pc. Thesupercluster, as well as the Hyades and Praesepe cluster, populationsrepresent at least three age groups. Standard models indicate ages of 3to 4, 6, and 8 x 10 exp 8 yr, whereas model ages with convectiveovershoot are nearly twice this. Most of the Am and USPC stars in thesupercluster are of the same age. The Ap stars mark the onset of shellhydrogen burning. The photometry of the red giants confirms the agespread and indicates a weakening of CN strength with age. Attention iscalled to the need for further study of NGC 2423 as an effectiveprolusion to understanding the evolution of the supercluster.

Rotation and transition layer emission in cool giants
Gray (1981, 1982) found that field giants with T(eff) less than about5500 K experience a steep decrease in rotational velocities coupled witha decrease in transition layer emission. This decrease may beattributable to fast magnetic braking or to redistribution of angularmomentum for rapidly increasing depths of the convection zones if theserotate with depth independent specific angular momentum. Additionalarguments in favor of the latter interpretation are presented. Theincrease of N/C abundances due to deep mixing occurs at the same pointas the decrease in v sin i. On the other hand, the ratios of the C IV toC II emission line fluxes decrease at this point indicating smallercontributions of MHD wave heating. The X-ray fluxes decrease at nearlythe same T(eff). Thus, no observations are found which would indicatelarger magnetic activity which could lead to fast magnetic braking.Theory predicts a rapid increase in the convection zone depth at theT(eff) where the decrease in v sin i is observed. This can explain theobserved phenomena.

Einstein Observatory magnitude-limited X-ray survey of late-type giant and supergiant stars
Results are presented of an extensive X-ray survey of 380 giant andsupergiant stars of spectral types from F to M, carried out with theEinstein Observatory. It was found that the observed F giants orsubgiants (slightly evolved stars with a mass M less than about 2 solarmasses) are X-ray emitters at the same level of main-sequence stars ofsimilar spectral type. The G giants show a range of emissions more than3 orders of magnitude wide; some single G giants exist with X-rayluminosities comparable to RS CVn systems, while some nearby large Ggiants have upper limits on the X-ray emission below typical solarvalues. The K giants have an observed X-ray emission level significantlylower than F and F giants. None of the 29 M giants were detected, exceptfor one spectroscopic binary.

Polarimetric investigation of dark patches of globular clusters
A polarimetric investigation has been conducted of dark patches innorthern globular clusters, using polarimetry to disentangle readingsfrom dust within the cluster from those in its foreground. Themeasurements obtained are in good agreement with those of previousstudies. Observations of M 15 yield confirmation of enhancedpolarization in the direction of an 'historical' dark patch likelycaused by the fluctuation of interstellar polarization. Calculationsindicate that the size of the dark patches and the wavelength variationof the apparent extinction are generally consistent with that expectedfor holes in the star distribution.

The evolution of chromospheric activity of cool giant and subgiant stars
IUE spectra for a large sample of cool subgiant stars are examined, andevidence is found that subgiants in the mass range 1.2-1.6 solar massesundergo a sudden decline in UV transition region emission near B - V =0.6, which corresponds to spectral type G0 IV. The decline in UVemission coincides with a sharp decrease in stellar rotation rates, andit is suggested that this decay in activity and rotation marks atransformation from acoustic heating in the early F stars to magneticdynamo-driven activity in the cooler stars, resulting in a strongrotational braking action by stellar wind. For more massive giant stars,there is a similar transformation in the nature of chromosphericactivity near B - V = 0.7, or spectral type G0 III, from acousticheating in the F-type giants to a solarlike dynamo mechanism in thecooler giants. No sign of an abrupt drop in activity near spectral typeG5 III at the location of Gray's proposed rotational boundary line isseen.

Energy Distribution in the Stellar Spectra of Different Spectral Types and Luminosities - Part Five - Normal Stars
Not Available

Magnetic structure in cool stars. XV - The evolution of rotation rates and chromospheric activity of giants
For cool giants and subgiants the observed dependence of rotationalvelocity and Ca II H and K line-core emission on color B-V isinterpreted in terms of changes in the moment of inertia by stellarevolution. Modeling of the rotational velocity during the evolution ofcool giants with masses between 2.0 and 3.0 solar masses, by taking intoaccount the change in the moment of inertia and assuming rigid-bodyrotation and conservation of angular momentum, describes the observeddecrease of v sin i with B-V. The computed evolution of the rotationalvelocity, together with the empirical relation between the Ca IIline-core emission and the rotation rate, explain the observed drop inthe Ca II line-core emission for giants at B-V = about 0.95. Forsubgiants with masses of about 1.5 solar mass, the change in the momentof inertia by itself cannot explain the observed v sin i distribution:there are indications of loss of angular momentum, presumably bymagnetic braking.

Metallicism among A and F giant stars
132 stars considered as A and F giants have been studied for theirproperties in the Geneva photometric system. It is shown that thissystem to derive the temperature, absolute magnitude and Fe/H value forstars in this part of the HR diagram. 36 percent of the stars of oursample exhibit an enhanced value Delta m2 that can be interpreted interms of Fe/H. The red limit of stars having an enhanced Fe/H value is0.225 in B2-V1 or 6500 K in Teff. This corresponds to the limit definedby Vauclair and Vauclair (1982) where the diffusion timescale is equalto the stellar lifetime and permits the assumption that the diffusion isthe process responsible for the metallicism observed in the A and Fgiants.

Differential population synthesis of early-type galaxies. I - Spectrophotometric atlas of synthesis standard spectra
Continuous spectrophotometry has been obtained for 200 objects at aresolution of 10-17 A over the wavelength region 3600-10,000 A.Kron-Cousins BVRI colors are computed from the spectra and compared withpublished photoelectric photometry. The (V - R)C color index is used togroup the individual observations to form synthesis standard spectra for48 common spectral types. The standard groups include a solar abundancesequence of most spectral types and luminosity classes, metal-rich andmetal weak G - K giant-branch sequences, and horizontal-branch giants.The variations with color, luminosity, and metallicity of severalprominent line strengths are discussed. The spectral atlas is availableas a FITS magnetic tape.

Observed and computed spectral flux distribution of non-supergiant O9-G8 stars. III - Determination of T(eff) for the stars in the Breger Catalogue
The effective temperatures and angular diameters of nonsupergiant O9-G8stars are determined from visible spectrophotometry. The results, whichrefer to 302 stars included in the Breger Catalogue, are derived fromthe comparison between the observed flux distributions and thepredictions of Kurucz's models (1979). The uncertainties to be expectedin individual results are discussed; their sizes are of the order of 5percent in effective temperature and 10 percent in angular diameter.

On the dispersion in brightness of far-ultraviolet emission lines of cool giant stars
Low-resolution spectra have been obtained with the short-wavelengthcamera of IUE for late-type giant stars of spectral type F5 III-G8 III.These stars are believed to be in their first crossing of the H-Rdiagram, as inferred from their location along the blue edge of theHertzsprung gap or their high abundance of lithium. From the earliestspectral type observed along the blue edge of the gap, the normalized CIV flux, which is indicative of 100,000 K plasma, increases to a maximumat G0 and then falls with advancing spectral type. The total range inemission measure of 100,000 K gas is an order of magnitude or more amongstars making their first appearance as yellow giants and averages about25 times higher in these stars than in other G8-K0 yellow giants, themajority of which are probably He-burning post-red giants. Theobservations tentatively show that transition region emission, and byinference coronal emission, increases in intensity with the growth ofconvection zones in late-type giants and then declines at lower surfacetemperatures, perhaps because of rotational spin-down and a weakening ofdynamo action.

The Hyades main sequence
Intermediate band, H-beta and RI observations of 72 Hyades cluster starsto V = 11 mag are reported and discussed. A modulus of 3.2 mag isderived on the basis of a comparison with field stars of large parallax.Also presented are observations of 98 main-sequence stars of the Hyadesgroup that were previously found to be group members from kinematicalconsiderations. Parallaxes of the group stars, computed on theassumption that they are members of an extended Hyades cluster, yieldmean values of (U, V, W) = (+40.5, -18.4, -4.9) km/s, with dispersionsof (2.3, 2.3, 6.0) km/s, compared with (+41.7, -18.4, -2.0) and (2.6,1.3, 1.9) km/s for the brightest cluster members. It is noted that allthe stars discussed can be considered as members of a supercluster inwhich only a slight relaxation control of the W velocities is presentfor stars far from the nucleus. Evidence is found, including that of thePraesepe cluster at Z = +80 pc, for some interchange between the U, V,and W velocities in stars farthest from the galactic plane, with thetotal cluster velocity being maintained.

Magnetic structure in cool stars. VI - CA II H and K fluxes from evolved stars
Quantitative measurements of the Ca II H and K flux of 335 evolved starsare presented and discussed. The results show that there is a largespread in the fluxes from stars with (B-V) less than 0.95 while the CaII H and K flux of single stars with (B-V) greater than 0.95 correlateswith color with little spread. Short-period binaries show a relativelyhigh Ca II H and K flux indicating that high fluxes result from rapidrotation independent of spectral type. The data are consistent with thehypothesis that the emission depends on dynamo action in the convectiveenvelope, the dynamo efficiency decreasing with decreasing rotationrate. The evolution of the emission is discussed as a function ofstellar mass. It is shown that stars which leave the main sequence withrelatively low or high rotational velocities show relatively low or highemission values, respectively. The flux lasts up to higher (B-V) valuesfor progressively higher masses.

Absolute luminosity calibration of F stars
Luminosity calibrations are performed for a restricted sample of 706F-type field stars of all luminosity classes and a similarly restrictedsample of 251 main-sequence F stars. The samples are restricted withrespect to values of photometric and metallicity indices, propermotions, radial velocities, and apparent magnitudes. Both linear andsecond-order relations between absolute magnitude and the photometricindices beta, /c1/ or (b-y), /c1/ are considered.These relations are calibrated by the statistical parallax method basedon the principle of maximum likelihood. The possible effect ofinterstellar absorption on the calibration results is investigated alongwith an effect of a photometric correction to the absolute magnitudes.The results obtained are compared with those of Crawford (1975) as wellas with the trigonometric parallaxes. The coefficients of thecalibration relations are derived from the trigonometric parallaxes, andpoor agreement is indicated. It is concluded that the trigonometricparallaxes must be used very carefully and only for nearby stars.

Spectral classification of the bright F stars.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1976PASP...88...95C&db_key=AST

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Equuleus
Right ascension:21h24m24.60s
Declination:+10°10'27.0"
Apparent magnitude:6.35
Distance:105.597 parsecs
Proper motion RA:72.2
Proper motion Dec:20.6
B-T magnitude:6.885
V-T magnitude:6.372

Catalogs and designations:
Proper Names
HD 1989HD 203842
TYCHO-2 2000TYC 1110-2360-1
USNO-A2.0USNO-A2 0975-20313842
BSC 1991HR 8191
HIPHIP 105695

→ Request more catalogs and designations from VizieR