Home     Getting Started     New Pictures     Picture of the Day     Blog New!     Login  

HD 211976


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

The origin and chemical evolution of carbon in the Galactic thin and thick discs*
In order to trace the origin and evolution of carbon in the Galacticdisc, we have determined carbon abundances in 51 nearby F and G dwarfstars. The sample is divided into two kinematically distinct subsampleswith 35 and 16 stars that are representative of the Galactic thin andthick discs, respectively. The analysis is based on spectral synthesisof the forbidden [CI] line at 872.7nm using spectra of very highresolution (R~ 220000) and high signal-to-noise ratio (S/N >~ 300)that were obtained with the Coudé Echelle Spectrograph (CES)spectrograph by the European Southern Observatory (ESO) 3.6-m telescopeat La Silla in Chile. We find that [C/Fe] versus [Fe/H] trends for thethin and thick discs are totally merged and flat for subsolarmetallicities. The thin disc that extends to higher metallicities thanthe thick disc shows a shallow decline in [C/Fe] from [Fe/H]~ 0 and upto [Fe/H]~+0.4. The [C/O] versus [O/H] trends are well separated betweenthe two discs (due to differences in the oxygen abundances) and bear agreat resemblance to the [Fe/O] versus [O/H] trends. Our interpretationof our abundance trends is that the sources that are responsible for thecarbon enrichment in the Galactic thin and thick discs have operated ona time-scale very similar to those that are responsible for the Fe and Yenrichment [i.e. SNIa and asymptotic giant branch (AGB) stars,respectively]. We further note that there exist other observational datain the literature that favour massive stars as the main sources forcarbon. In order to match our carbon trends, we believe that the carbonyields from massive stars then must be very dependent on metallicity forthe C, Fe and Y trends to be so finely tuned in the two discpopulations. Such metallicity-dependent yields are no longer supportedby the new stellar models in the recent literature. For the Galaxy, wehence conclude that the carbon enrichment at metallicities typical ofthe disc is mainly due to low- and intermediate-mass stars, whilemassive stars are still the main carbon contributor at low metallicities(halo and metal-poor thick disc).

Abundance trends in kinematical groups of the Milky Way's disk
We have compiled a large catalogue of metallicities and abundance ratiosfrom the literature in order to investigate abundance trends of severalalpha and iron peak elements in the thin disk and the thick disk of theGalaxy. The catalogue includes 743 stars with abundances of Fe, O, Mg,Ca, Ti, Si, Na, Ni and Al in the metallicity range -1.30 < [Fe/H]< +0.50. We have checked that systematic differences betweenabundances measured in the different studies were lower than randomerrors before combining them. Accurate distances and proper motions fromHipparcos and radial velocities from several sources have been retreivedfor 639 stars and their velocities (U, V, W) and galactic orbits havebeen computed. Ages of 322 stars have been estimated with a Bayesianmethod of isochrone fitting. Two samples kinematically representative ofthe thin and thick disks have been selected, taking into account theHercules stream which is intermediate in kinematics, but with a probabledynamical origin. Our results show that the two disks are chemicallywell separated, they overlap greatly in metallicity and both showparallel decreasing alpha elements with increasing metallicity, in theinterval -0.80 < [Fe/H] < -0.30. The Mg enhancement with respectto Fe of the thick disk is measured to be 0.14 dex. An even largerenhancement is observed for Al. The thick disk is clearly older than thethin disk with tentative evidence of an AMR over 2-3 Gyr and a hiatus instar formation before the formation of the thin disk. We do not observea vertical gradient in the metallicity of the thick disk. The Herculesstream has properties similar to that of the thin disk, with a widerrange of metallicity. Metal-rich stars assigned to the thick disk andsuper-metal-rich stars assigned to the thin disk appear as outliers inall their properties.

α-, r-, and s-process element trends in the Galactic thin and thick disks
From a detailed elemental abundance analysis of 102 F and G dwarf starswe present abundance trends in the Galactic thin and thick disks for 14elements (O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, Y, Ba, and Eu).Stellar parameters and elemental abundances (except for Y, Ba and Eu)for 66 of the 102 stars were presented in our previous studies (Bensbyet al. [CITE], A&A, 410, 527, [CITE], A&A, 415, 155). The 36stars that are new in this study extend and confirm our previous resultsand allow us to draw further conclusions regarding abundance trends. Thes-process elements Y and Ba, and the r-element Eu have also beenconsidered here for the whole sample for the first time. With this newlarger sample we now have the following results: 1) smooth and distinctabundance trends that for the thin and thick disks are clearlyseparated; 2) the α-element trends for the thick disk show typicalsignatures from the enrichment of SN Ia; 3) the thick disk stellarsample is in the mean older than the thin disk stellar sample; 4) thethick disk abundance trends are invariant with galactocentric radii(R_m); 5) the thick disk abundance trends appear to be invariant withvertical distance (Z_max) from the Galactic plane. Adding furtherevidence from the literaure we argue that a merger/interacting scenariowith a companion galaxy to produce a kinematical heating of the stars(that make up today's thick disk) in a pre-existing old thin disk is themost likely formation scenario for the Galactic thick disk. The 102stars have -1 ≲ [Fe/H] ≲ +0.4 and are all in the solarneighbourhood. Based on their kinematics they have been divided into athin disk sample and a thick disk sample consisting of 60 and 38 stars,respectively. The remaining 4 stars have kinematics that make themkinematically intermediate to the two disks. Their chemical abundancesalso place them in between the two disks. Which of the two diskpopulations these 4 stars belong to, or if they form a distinctpopulation of their own, can at the moment not be settled. The 66 starsfrom our previous studies were observed with the FEROS spectrograph onthe ESO 1.5-m telescope and the CES spectrograph on the ESO 3.6-mtelescope. Of the 36 new stars presented here 30 were observed with theSOFIN spectrograph on the Nordic Optical Telescope on La Palma, 3 withthe UVES spectrograph on VLT/UT2, and 3 with the FEROS spectrograph onthe ESO 1.5-m telescope. All spectra have high signal-to-noise ratios(typically S/N≳ 250) and high resolution (R˜ 80 000, 45 000,and 110 000 for the SOFIN, FEROS, and UVES spectra, respectively).Based on observations collected at the Nordic Optical Telescope on LaPalma, Spain, and at the European Southern Observatories on La Silla andParanal, Chile, Proposals # 65.L-0019(B), 67.B-0108(B), 69.B-0277. FullTables [see full text], [see full text] and [see full text] are onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/433/185

Comparison of Nuclear Starburst Luminosities between Seyfert 1 and 2 Galaxies Based on Near-Infrared Spectroscopy
We report on infrared K- (2-2.5 μm) and L-band (2.8-4.1 μm) slitspectroscopy of 23 Seyfert 1 galaxies in the CfA and 12 μm samples. Apolycyclic aromatic hydrocarbon (PAH) emission feature at 3.3 μm inthe L band is primarily used to investigate nuclear star-formingactivity in these galaxies. The 3.3 μm PAH emission is detected in 10sources (=43%), demonstrating that detection of nuclear star formationin a significant fraction of Seyfert 1 galaxies is now feasible. For thePAH-detected nuclei, the surface brightness values of the PAH emissionare as high as those of typical starbursts, suggesting that the PAHemission probes the putative nuclear starbursts in the dusty tori aroundthe central active galactic nuclei (AGNs). The magnitudes of the nuclearstarbursts are quantitatively estimated from the observed 3.3 μm PAHemission luminosities. The estimated starburst luminosities relative tosome indicators of AGN powers in these Seyfert 1 galaxies are comparedwith 32 Seyfert 2 galaxies in the same samples that we have previouslyobserved. We find that there is no significant difference in nuclearstarburst to AGN luminosity ratios of Seyfert 1 and 2 galaxies and thatnuclear starburst luminosity positively correlates with AGN power inboth types. Our results favor a slightly modified AGN unification model,which predicts that nuclear starbursts occurring in the dusty tori ofSeyfert galaxies are physically connected to the central AGNs, ratherthan the classical unification paradigm, in which the dusty tori simplyhide the central AGNs of Seyfert 2 galaxies and reprocess AGN radiationas infrared dust emission in Seyfert galaxies. No significantdifferences in nuclear star formation properties are recognizablebetween Seyfert 1 galaxies in the CfA and 12 μm samples.

The Correlation of Lithium and Beryllium in F and G Field and Cluster Dwarf Stars
Although Li has been extensively observed in main-sequence field andcluster stars, there are relatively fewer observations of Be. We haveobtained Keck HIRES spectra of 36 late F and early G dwarfs in order tostudy the Li-Be correlation we found previously in the temperatureregime of 5900-6650 K. The sample size for this temperature range withdetectable and (usually) depleted Li and Be is now 88, including Li andBe abundances in both cluster and field stars. Therefore we can nowinvestigate the influence of other parameters such as age, temperature,and metallicity on the correlation. The Be spectra at 3130 Å weretaken over six nights from 1999 November to 2002 January and have aspectral resolution of ~48,000 and a median signal-to-noise ratio (S/N)of 108 pixel-1. We obtained Li spectra of 22 stars with theUniversity of Hawaii 88 inch (2.2 m) telescope and coudéspectrograph with a spectral resolution of ~70,000 and a median S/N of110 pixel-1. We have redetermined the effective temperaturesfor all the stars and adopted other parameters from published data orempirical relations. The abundances of both Li and Be in the stars weobserved were determined from spectrum synthesis with MOOG 2002. Thepreviously observed Li equivalent widths for some of our Be stars wereused with the new temperatures and MOOG 2002 in the ``blends'' mode. Forthe 46 field stars from this and earlier studies we find a linearrelation between A(Li) and A(Be) with a slope of 0.375+/-0.036. Over theTeff range 5900-6650 K, we find the modest scatter about theBe-Li relation to be significantly correlated with Teff andperhaps also [Fe/H]. Dividing the sample into two temperature regimes of6300-6650 K (corresponding to the cool side of the Li-Be dip) and5900-6300 K (corresponding to the Li ``plateau'') reveals possible smalldifferences in the slopes for the two groups, 0.404+/-0.034 and0.365+/-0.049, respectively. When we include the cluster stars (Hyades,Pleiades, Praesepe, UMa Group, and Coma), the slope for the fulltemperature range (88 stars) is essentially the same, at 0.382+/-0.030,as for the field stars alone. For the hotter temperature group of 35Li-Be dip stars in the field and in clusters the slope is higher, at0.433+/-0.036, while for the cooler star group (54 stars) the slope is0.337+/-0.031, different by more than 1 σ. This small differencein the slope is predicted by the theory of rotationally induced mixing.The four stars with [Fe/H] less than -0.4 are all below the best-fitrelation, i.e., there is more Be depletion at a given A(Li) or less Beab initio. The youngest stars, i.e., Pleiades, have less depletion ofboth Li and Be. This too is predicted by rotationally induced slowmixing. Combining the Be results from both field and cluster stars, wefind that there are stars with undepleted Be, i.e., near the meteoriticvalues of 1.42 dex, at all temperatures from 5500 to 6800 K. Depletionsof Be of up to and even exceeding 2 orders of magnitude are commonbetween 6000 and 6700 K.

Stellar Chemical Signatures and Hierarchical Galaxy Formation
To compare the chemistries of stars in the Milky Way dwarf spheroidal(dSph) satellite galaxies with stars in the Galaxy, we have compiled alarge sample of Galactic stellar abundances from the literature. Whenkinematic information is available, we have assigned the stars tostandard Galactic components through Bayesian classification based onGaussian velocity ellipsoids. As found in previous studies, the[α/Fe] ratios of most stars in the dSph galaxies are generallylower than similar metallicity Galactic stars in this extended sample.Our kinematically selected stars confirm this for the Galactic halo,thin-disk, and thick-disk components. There is marginal overlap in thelow [α/Fe] ratios between dSph stars and Galactic halo stars onextreme retrograde orbits (V<-420 km s-1), but this is notsupported by other element ratios. Other element ratios compared in thispaper include r- and s-process abundances, where we find a significantoffset in the [Y/Fe] ratios, which results in a large overabundance in[Ba/Y] in most dSph stars compared with Galactic stars. Thus, thechemical signatures of most of the dSph stars are distinct from thestars in each of the kinematic components of the Galaxy. This resultrules out continuous merging of low-mass galaxies similar to these dSphsatellites during the formation of the Galaxy. However, we do not ruleout very early merging of low-mass dwarf galaxies, since up to one-halfof the most metal-poor stars ([Fe/H]<=-1.8) have chemistries that arein fair agreement with Galactic halo stars. We also do not rule outmerging with higher mass galaxies, although we note that the LMC and theremnants of the Sgr dwarf galaxy are also chemically distinct from themajority of the Galactic halo stars. Formation of the Galaxy's thickdisk by heating of an old thin disk during a merger is also not ruledout; however, the Galaxy's thick disk itself cannot be comprised of theremnants from a low-mass (dSph) dwarf galaxy, nor of a high-mass dwarfgalaxy like the LMC or Sgr, because of differences in chemistry.The new and independent environments offered by the dSph galaxies alsoallow us to examine fundamental assumptions related to thenucleosynthesis of the elements. The metal-poor stars ([Fe/H]<=-1.8)in the dSph galaxies appear to have lower [Ca/Fe] and [Ti/Fe] than[Mg/Fe] ratios, unlike similar metallicity stars in the Galaxy.Predictions from the α-process (α-rich freeze-out) would beconsistent with this result if there have been a lack of hypernovae indSph galaxies. The α-process could also be responsible for thevery low Y abundances in the metal-poor stars in dSph's; since [La/Eu](and possibly [Ba/Eu]) are consistent with pure r-process results, thelow [Y/Eu] suggests a separate r-process site for this light(first-peak) r-process element. We also discuss SNe II rates and yieldsas other alternatives, however. In stars with higher metallicities([Fe/H]>=-1.8), contributions from the s-process are expected; [(Y,La, and Ba)/Eu] all rise as expected, and yet [Ba/Y] is still muchhigher in the dSph stars than similar metallicity Galactic stars. Thisresult is consistent with s-process contributions from lower metallicityAGB stars in dSph galaxies, and is in good agreement with the slowerchemical evolution expected in the low-mass dSph galaxies relative tothe Galaxy, such that the build-up of metals occurs over much longertimescales. Future investigations of nucleosynthetic constraints (aswell as galaxy formation and evolution) will require an examination ofmany stars within individual dwarf galaxies.Finally, the Na-Ni trend reported in 1997 by Nissen & Schuster isconfirmed in Galactic halo stars, but we discuss this in terms of thegeneral nucleosynthesis of neutron-rich elements. We do not confirm thatthe Na-Ni trend is related to the accretion of dSph galaxies in theGalactic halo.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Oxygen trends in the Galactic thin and thick disks
We present oxygen abundances for 72 F and G dwarf stars in the solarneighbourhood. Using the kinematics of the stars we divide them into twosub-samples with space velocities that are typical for the thick andthin disks, respectively. The metallicities of the stars range from[Fe/H] ≈ -0.9 to +0.4 and we use the derived oxygen abundances of thestars to: (1) perform a differential study of the oxygen trends in thethin and the thick disk; (2) to follow the trend of oxygen in the thindisk to the highest metallicities. We analyze the forbidden oxygen linesat 6300 Å and 6363 Å as well as the (NLTE afflicted) tripletlines around 7774 Å. For the forbidden line at 6300 Å wehave spectra of very high S/N (>400) and resolution (R ≳ 215000). This has enabled a very accurate modeling of the oxygen line andthe blending Ni lines. The high internal accuracy in our determinationof the oxygen abundances from this line is reflected in the very tighttrends we find for oxygen relative to iron. From these abundances we areable to draw the following major conclusions: (i) That the [O/Fe] trendat super-solar [Fe/H] continues downward which is in concordance withmodels of Galactic chemical evolution. This is not seen in previousstudies as it has not been possible to take the blending Ni lines in theforbidden oxygen line at 6300 Å properly into account; (ii) Thatthe oxygen trends in the thin and the thick disks are distinctlydifferent. This confirms and extends previous studies of the otherα-elements; (iii) That oxygen does not follow Mg at super-solarmetallicities; (iv) We also provide an empirical NLTE correction for theinfrared O I triplet that could be used for dwarf star spectra with aS/N such that only the triplet lines can be analyzed well, e.g. stars atlarge distances; (v) Finally, we find that Gratton et al. (1999)overestimate the NLTE corrections for the permitted oxygen triplet linesat ˜7774 Å for the parameter space that our stars span.Based on observations collected at the European Southern Observatory, LaSilla and Paranal, Chile, Proposals #65.L-0019, 67.B-0108, and69.B-0277.The full Table 4 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?/A+A/415/155

Elemental abundance trends in the Galactic thin and thick disks as traced by nearby F and G dwarf stars
Based on spectra from F and G dwarf stars, we present elementalabundance trends in the Galactic thin and thick disks in the metallicityregime -0.8<˜ [Fe/H] <˜ +0.4. Our findings can besummarized as follows. 1) Both the thin and the thick disks show smoothand distinct abundance trends that, at sub-solar metallicities, areclearly separated. 2) For the alpha -elements the thick disk showssignatures of chemical enrichment from SNe type Ia. 3) The age of thethick disk sample is in the mean older than the thin disk sample. 4)Kinematically, there exist thick disk stars with super-solarmetallicities. Based on these findings, together with other constraintsfrom the literature, we discuss different formation scenarios for thethick disk. We suggest that the currently most likely formation scenariois a violent merger event or a close encounter with a companion galaxy.Based on kinematics the stellar sample was selected to contain starswith high probabilities of belonging either to the thin or to the thickGalactic disk. The total number of stars are 66 of which 21 belong tothe thick disk and 45 to the thin disk. The analysis is based onhigh-resolution spectra with high signal-to-noise (R ~ 48 000 and S/Ngtrsim 150, respectively) recorded with the FEROS spectrograph on LaSilla, Chile. Abundances have been determined for four alpha -elements(Mg, Si, Ca, and Ti), for four even-nuclei iron peak elements (Cr, Fe,Ni, and Zn), and for the light elements Na and Al, from equivalent widthmeasurements of ~ 30 000 spectral lines. An extensive investigation ofthe atomic parameters, log gf-values in particular, have been performedin order to achieve abundances that are trustworthy. Noteworthy is thatwe find for Ti good agreement between the abundances from Ti I and TiIi. Our solar Ti abundances are in concordance with the standardmeteoritic Ti abundanceBased on observations collected at the European Southern Observatory, LaSilla, Chile, Proposals #65.L-0019(B) and 67.B-0108(B).Full Tables \ref{tab:linelist} and \ref{tab:abundances} are onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/410/527

α Element Abundances in Mildly Metal-Poor Stars
We present [O/Fe] and other α-elements/Fe ratios in a sample of 24mildly metal-poor stars. The sample stars are thought to be brighterthan 9.0 magnitude and have available uvby photometric data. Also, basedon the typical LTE abundance analysis, we find that [Si/Fe] and [Ca/Fe]are correlated with each other. Combining the kinematic data and themetallicity, we can classify the sample stars into three groups. Anabundance analysis shows some evidence that these groups are chemicallydiscrete from each other. Further, the general trend of a decreasingoverabundance of the α elements with increasing metallicity hasbeen confirmed.

HIPPARCOS age-metallicity relation of the solar neighbourhood disc stars
We derive age-metallicity relations (AMRs) and orbital parameters forthe 1658 solar neighbourhood stars to which accurate distances aremeasured by the HIPPARCOS satellite. The sample stars comprise 1382 thindisc stars, 229 thick disc stars, and 47 halo stars according to theirorbital parameters. We find a considerable scatter for thin disc AMRalong the one-zone Galactic chemical evolution (GCE) model. Orbits andmetallicities of thin disc stars show now clear relation each other. Thescatter along the AMR exists even if the stars with the same orbits areselected. We examine simple extension of one-zone GCE models whichaccount for inhomogeneity in the effective yield and inhomogeneous starformation rate in the Galaxy. Both extensions of the one-zone GCE modelcannot account for the scatter in age - [Fe/H] - [Ca/Fe] relationsimultaneously. We conclude, therefore, that the scatter along the thindisc AMR is an essential feature in the formation and evolution of theGalaxy. The AMR for thick disc stars shows that the star formationterminated 8 Gyr ago in the thick disc. As already reported by Grattonet al. (\cite{Gratton_et.al.2000}) and Prochaska et al.(\cite{Prochaska_et.al.2000}), thick disc stars are more Ca-rich thanthin disc stars with the same [Fe/H]. We find that thick disc stars showa vertical abundance gradient. These three facts, the AMR, verticalgradient, and [Ca/Fe]-[Fe/H] relation, support monolithic collapseand/or accretion of satellite dwarf galaxies as likely thick discformation scenarios. Tables 2 and 3 are only available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)or via http:/ /cdsweb.u-strasbg.fr/ cgi-bin/qcat?J/ A+A/394/927

Energy Diagnoses of Nine Infrared Luminous Galaxies Based on 3-4 Micron Spectra
The energy sources of nine infrared luminous galaxies (IRLGs) arediagnosed based on their ground-based 3-4 μm spectra. Both theequivalent width of the 3.3 μm polycyclic aromatic hydrocarbon (PAH)emission feature and the 3.3 μm PAH to far-infrared luminosity ratio(L3.3/LFIR) are analyzed. Assuming that nuclearcompact starburst activity in these sources produces the 3.3 μm PAHemission as strongly as that in starburst galaxies with lowerfar-infrared luminosities, the following results are found. For sixIRLGs, both the observed equivalent widths and theL3.3/LFIR ratios are too small to explain the bulkof their far-infrared luminosities by compact starburst activity,indicating that active galactic nucleus (AGN) activity is a dominantenergy source. For the other three IRLGs, while the 3.3 μm PAHequivalent widths are within the range of starburst galaxies, theL3.3/LFIR ratios after correction for screen dustextinction are a factor of ~3 smaller. The uncertainty in the dustextinction correction factor and in the scatter of the intrinsicL3.3/LFIR ratios for starburst galaxies does notallow a determination of the ultimate energy sources for these threeIRLGs.

Photometric Abundance Calibration of delta Scuti Stars Using HK Photometry
The hk index has been used as a metallicity indicator for RR Lyraevariable stars. It is now being applied to the shorter period deltaScuti variables. Employing spectroscopic abundances of stars withpublished hk values and photometric indices calculated from stellaratmosphere models, a three-dimensional interpolation is used todetermine [Fe/H] from intrinsic b-y, c_1, and hk values. The resulting[Fe/H], log g, and T_eff values for 10 delta Scuti stars are presented.

Kinematics and Metallicity of Stars in the Solar Region
Several samples of nearby stars with the most accurate astrometric andphotometric parameters are searched for clues to their evolutionaryhistory. The main samples are (1) the main-sequence stars with b - ybetween 0.29 and 0.59 mag (F3 to K1) in the Yale parallax catalog, (2) agroup of high-velocity subgiants studied spectroscopically by Ryan &Lambert, and (3) high-velocity main-sequence stars in the extensiveinvestigation by Norris, Bessel, & Pickles. The major conclusionsare as follows: (1) The oldest stars (halo), t >= 10-12 Gyr, haveV-velocities (in the direction of Galactic rotation and referred to theSun) in the range from about -50 to -800 km s^-1 and have aheavy-element abundance [Fe/H] of less than about -0.8 dex. The agerange of these objects depends on our knowledge of globular clusterages, but if age is correlated with V-velocity, the youngest may be M22and M28 (V ~ -50 km s^-1) and the oldest NGC 3201 (V ~ -500 km s^-1) andassorted field stars. (2) The old disk population covers the large agerange from about 2 Gyr (Hyades, NGC 752) to 10 or 12 Gyr (Arcturusgroup, 47 Tuc), but the lag (V) velocity is restricted to less thanabout 120 km s^-1 and [Fe/H] >= -0.8 or -0.9 dex. The [Fe/H] ~ -0.8dex division between halo and old disk, near t ~ 10-12 Gyr, is marked bya change in the character of the CN index (C_m) and of the blanketingparameter K of the DDO photometry. (3) The young disk population, t <2 Gyr, is confined exclusively to a well-defined area of the (U, V)velocity plane. The age separating young and old disk stars is also thatseparating giant evolution of the Hyades (near main-sequence luminosity)and M67 (degenerate helium cores and a large luminosity rise) kinds. Thetwo disk populations are also separated by such indexes as the g-indexof Geveva photometry. There appears to be no obvious need to invokeexogeneous influences to understand the motion and heavy-elementabundance distributions of the best-observed stars near the Sun.Individual stars of special interest include the parallax star HD 55575,which may be an equal-component binary, and the high-velocity star HD220127, with a well-determined space velocity near 1000 km s^-1.

X-ray/optical observations of stars with shallow convection zones (A8-G2 V)
We present Walraven photometry and ROSAT All-Sky Survey data for asample of 173 bright main-sequence stars with spectral types between A8Vand G2V\@. These observations are part of a study of the onset ofmagnetic surface activity along the main sequence. Values for theeffective temperature, surface gravity and interstellar reddening havebeen obtained from a comparison of the observed Walraven colours withtheoretical values. These parameters have been used to derive accurateX-ray\ surface flux densities.

The Angular Momentum of Main Sequence Stars and Its Relation to Stellar Activity
Rotational velocities are reported for intermediate-mass main sequencestars it the field. The measurements are based on new, high S/N CCDspectra from the Coudé Feed Telescope of the Kitt Peak NationalObservatory. We analyze these rotation rates for a dependence on bothmass and age. We compare the average rotation speeds of the field starswith mean velocities for young stars in Orion, the Alpha Persei cluster,the Pleiades, and the Hyades. The average rotation speeds of stars moremassive than $\sim1.6$ \msun\experience little or no change during theevolutionary lifetimes of these stars on the zero age main sequence orwithin the main sequence band. Less massive stars in the range betwee n1.6\msun\ and 1.3\msun\ also show little decline in mean rotation ratewhile they are on the main sequence, and at most a factor of 2 decreasein velocity as they evolve off the main sequence. The {\it e}-foldingtime for the loss of angular momentum b y the latter group of stars isat least 1--2 billion years. This inferred characteristic time scale forspindown is far longer than the established rotational braking time forsolar-type stars with masses below $\sim1.3$ \msun. We conclude from acomparison of the trends in rotation with trends in chromospheric andcoronal activity that the overall decline in mean rotation speed alongthe main sequence, from $\sim2$ \msun\ down to $\sim1.3$ \msun, isimposed during the pre-main sequence phase of evolution, and that thispattern changes little thereafter while the star resides on the mainsequence. The magnetic activity implicated in the rotational spindown ofthe Sun and of similar stars during their main sequence lifetimes mus ttherefore play only a minor role in determining the rotation rates ofthe intermediate mass stars, either because a solar-like dynamo is weakor absent, or else the geometry of the magnetic field is appreciablyless effective in removing angular momentu m from these stars. (SECTION:Stars)

Beryllium in Lithium-deficient F and G Stars
We present the results of an extensive search, conducted at theCanada-France-Hawaii 3.6-m telescope, for beryllium (Be) in theatmospheres of lithium-deficient F and G dwarfs. We also report revisedlithium (Li) estimates for the entire sample using previously publishedequivalent widths and updated, consistently calculated stellarparameters. Abundances derived from an LTE analysis of the Li and Beline-forming regions confirm the suspicion that F stars which deplete Liby factors of 10-200 may also be beryllium deficient. Photospheric Beconcentrations range from near meteoritic levels in G dwarfs to factorsof 10-100 below this assumed initial abundance in hotter stars.Moreover, significant Be deficiencies appear in stars that populate a600 K wide effective temperature window centered on 6500 K. This Beabundance gap is reminiscent of the Li gap observed in open clusters.Also, the discovery of 12 probable "110 Herculis" stars, objects thatexhibit a depleted, but detected, surface concentration of both Li andBe, provides a powerful means of differentiating between the possiblephysical processes responsible for observed light element abundancepatterns. Indeed, the Be data presented here, in conjunction with thenewly calculated Li abundances, lead to the following conclusionsregarding the hypothesized, light element depletion scenarios: Mass losscannot account for stars with severely depleted (but detected) Li andmoderate Be deficiencies. The predicted timescales for surface depletiondue to microscopic diffusion are too long for significant Li and Bedeficiencies to develop in cool (Teff <= 6200) stars; nevertheless,underabundances are observed in these stars. Diffusion theory alsopredicts Li and Be depletion rates to be comparable, but it is evidentthat Li and Be depletion proceed at different speeds. Models of mixinginduced by internal gravity waves cannot explain mild Be deficiencies incool dwarfs. A key meridional circulation prediction regarding theefficiency and severity of Li and Be dilution is shown to be fallible.However, rotationally induced mixing, a turbulent blending of materialbeneath the surface convection zone due to the onset of instabilitiesfrom superficial angular momentum loss, predicts both the observed lightelement depletion morphology as well as the existence of 110 Heranalogs. These "Yale" mixing models provide, therefore, the mostplausible explanation, of those presented, for the observed Li and Beabundances.

A catalogue of [Fe/H] determinations: 1996 edition
A fifth Edition of the Catalogue of [Fe/H] determinations is presentedherewith. It contains 5946 determinations for 3247 stars, including 751stars in 84 associations, clusters or galaxies. The literature iscomplete up to December 1995. The 700 bibliographical referencescorrespond to [Fe/H] determinations obtained from high resolutionspectroscopic observations and detailed analyses, most of them carriedout with the help of model-atmospheres. The Catalogue is made up ofthree formatted files: File 1: field stars, File 2: stars in galacticassociations and clusters, and stars in SMC, LMC, M33, File 3: numberedlist of bibliographical references The three files are only available inelectronic form at the Centre de Donnees Stellaires in Strasbourg, viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5), or viahttp://cdsweb.u-strasbg.fr/Abstract.html

The Gronbech-Olsen photometry: Transformations to a Hyades-Coma system
In this paper, we consider the zero points of six sets of Stromgren-betaphotometry. The color-index system to which our results are referred isa 'Hyades-Coma' system composed of photometry by Crawford and Perry(1966) and Crawford and Barnes (1969). For V magnitudes, we usemeasurements by Taylor and Joner (1992). Our results are as follows. (1)The zero points of photometry by Gronbech and Olsen (1976, 1977) areoffset from those of the Hyades-Coma system. The offsets can amount toseveral mmag; they appear for V and all color indices except beta, anddepend on right ascension and (usually) declination. (2) These offsetscan be applied to photometry by Stetson (1991), who reduced his resultsto the Gronbech-Olsen system. After correction, Stetson's results for aset of 'transfer stars' differ from comparable data published byCrawford and Barnes (1970). (3) A direct comparison of the transferstars to the Hyades yields consistency between the Hyades-Coma andCrawford-Barnes zero points (for the transfer stars specifically). Thisresult supports a conclusion drawn by Taylor and Joner, and suggeststhat here is some problem with the zero points of Stetson'stransfer-star data. (4) From Stetson's corrected data, one finds thatthe Crawford-Perry zero points for the Hyades are consistent with theCrawford-Barnes zero points for Coma. This result agrees with aconclusion drawn by Taylor and Joner from their own data, and suggeststhat the problem postulated for Stetson's transfer-star data does notextend to his results for the Hyades and Coma.

Ca II H and K Filter Photometry on the UVBY System. II. The Catalog of Observations
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995AJ....109.2828T&db_key=AST

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

Galactic evolution of Beryllium
The abundance of Be in the lowest-metallicity stars is a probe of BigBang Nucleosynthesis and its abundance in halo and disk stars is a probeof galactic evolution and stellar structure. We present observations ofthe Be II resonance lines in 14 halo stars and 27 (mostly old) diskstars with (Fe/H) from -2.7 to +0.13. The spectra were obtained at theCanada-France-Hawaii (CFH) 3.6 m telescope and have a measuredresolution of 0.13 A and a median signal-to-noise ratio of approximately50. For 18 of the 41 stars we have also made observations of the O Itriplet at the Palomar 5 m telescope, the UH 2.2 m telescope, and theCFH telescope. Stellar parameters of Teff, log g, and (Fe/H)were carefully determined from several independent estimates. Abundancesare determined for log N (Be/H) and (O/H) from measured equivalentwidths, model parameters, and Kurucz (1991) model atmospheres with theRAI10 model atmosphere abundance program. The agreement with previouslypublished Be detections is very good (a mean difference of 0.05 dex) forfive of six determinations in four halo stars and in four of five diskstars. The agreement with very recently published O abundances is0.0075 dex. It is plausible, but far from conclusive, thatthere is a plateau in the amount of Be present in the lowest metallicitystars: log N (Be/H) approximately -12.8 for (Fe/H) less than -2.2 As(Fe/H) increases from -2.2 to -1.0, log N (Be/H) increases and the slopeis 1.2-1.3, indicating a faster increase in Be than in Fe. This isconsistent with the production of Be by spallation reactions betweencosmic rays and O atoms from massive stars and the production of Fe fromintermediate mass stars. Evidence for stellar processing of Be exists inthe disk stars and in at least two of the halo stars. A plot of Beabundance vs O abundances shows that Be increases as O1.12,indicating that Be is produced primarily is the vicinity of supernovaeenvelopes, but a small and interesting fraction is produced in thegeneral interstellar gas in the halo.

Optical Polarization of 1000 Stars Within 50-PARSECS from the Sun
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1993A&AS..101..551L&db_key=AST

A catalogue of Fe/H determinations - 1991 edition
A revised version of the catalog of Fe/H determinations published by G.Cayrel et al. (1985) is presented. The catalog contains 3252 Fe/Hdeterminations for 1676 stars. The literature is complete up to December1990. The catalog includes only Fe/H determinations obtained from highresolution spectroscopic observations based on detailed spectroscopicanalyses, most of them carried out with model atmospheres. The catalogcontains a good number of Fe/H determinations for stars from open andglobular clusters and for some supergiants in the Magellanic Clouds.

Early type high-velocity stars in the solar neighborhood. IV - Four-color and H-beta photometry
Results are presented from photometric obaservations in the Stromgrenuvby four-color and H-beta systems of early-type high-velocity stars inthe solar neighborhood. Several types of photometrically peculiar starsare selected on the basis of their Stromgren indices and areprovisionally identified as peculiar A stars, field horizontal-branchstars, metal-poor stars near the Population II and old-disk turnoffs,metal-poor blue stragglers, or metallic-line A stars. Numerousphotometrically normal stars were also found.

Ca II H and K filter photometry on the UVBY system. I - The standard system
A fifth filter (fwhm = 90 A) centered on Ca II H and K has beendeveloped for use with the standard uvby system. The filter, called Ca,is designed primarily for applications to metal-poor dwarfs and redgiants, regions where the uvby metallicity index, m(l), loses somesensitivity. An index, hk, is defined by replacing v in m(l) by Ca. Theeffects of interstellar extinction on the index are modeled anddemonstrated to be modest and relatively insensitive to spectral type.Observations of V, (b-y), and hk for 163 primary standards are detailedand transformed to the standard V and (b-y) system. A qualitativeanalysis using only the primary standards indicates that hk is moresensitive than m(l) over the regions of interest by about a factor of 3.

Calibration stars for cross-correlation studies of stellar rotation, and an examination of the archival data
Precise v sin i values have been measured for more than 60 F and Gdwarfs. Spanning the range of 5-80 km/s, they are primarily useful forcalibrating cross correlations up to about 50 km/s. The present valuesare compared to older ones from photographic spectra and it is foundthat most of the older data are adequate but have fairly large errors.However, the rotational-velocity catalog of Uesugi and Fukuda (1982) iscontaminated with erroneous data and is, therefore, suspect as a sourceof stellar rotational information.

ICCD speckle observations of binary stars. I - A survey for duplicity among the bright stars
A survey of a sample of 672 stars from the Yale Bright Star Catalog(Hoffleit, 1982) has been carried out using speckle interferometry onthe 3.6-cm Canada-France-Hawaii Telescope in order to establish thebinary star frequency within the sample. This effort was motivated bythe need for a more observationally determined basis for predicting thefrequency of failure of the Hubble Space Telescope (HST) fine-guidancesensors to achieve guide-star lock due to duplicity. This survey of 426dwarfs and 246 evolved stars yielded measurements of 52 newly discoveredbinaries and 60 previously known binary systems. It is shown that thefrequency of close visual binaries in the separation range 0.04-0.25arcsec is 11 percent, or nearly 3.5 times that previously known.

Lithium in early F dwarfs
The Canada-France-Hawaii telescope and Reticon detector fitted with acoude spectrograph was used to obtain spectra of 7 F0-F5 dwarf stars inorder to determine the Li abundances in early Pop I stars. The spectrawere collected witha 0.11 A resolution at a S/N ratio of 400-600. Thecosmic abundance ratio of Li/H = 1/1 billion was found in a third of thestars observed, i.e., the hottest and youngest objects. Furtherdepletions by factors of 3-10 were detected with 17 percent of thedwarfs, and 53 percent were depleted by factors of 10-150. The objectswere divided into those which were Li-rich and under 2 billion yr oldand those which were older and were depleted by factors of over 40 timesthe cosmic abundance. The oldest stars were most depleted. Curiously,the Li-rich stars had high rotation rates and the Li-poor stars had slowrotation rates, except for the Hyades-like dwarfs, which had low Liabundances and temperatures around 6400 K.

Three-dimensional motion of dwarf stars and RR Lyrae variables
A collection of 220 high-velocity dwarfs, 532 low-velocity dwarfs, and114 RR Lyrae variables is given in tables with calculations ofkinematical quantities in a three-dimensional model of galactic space. Ametal indicator, Delta-S, for RR Lyrae variables is transformed into theultraviolet excess, delta (0.6), which is utilized for a statisticalstudy of kinematics under the same metallicity classification. It isfound that the primordial Galaxy contracted by a factor of at least 20in the radial direction as compared to at least 50 in the Z direction.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Pegasus
Right ascension:22h20m55.80s
Declination:+08°11'12.0"
Apparent magnitude:6.17
Distance:31.797 parsecs
Proper motion RA:39.9
Proper motion Dec:20.5
B-T magnitude:6.709
V-T magnitude:6.216

Catalogs and designations:
Proper Names
HD 1989HD 211976
TYCHO-2 2000TYC 1138-130-1
USNO-A2.0USNO-A2 0975-20903796
BSC 1991HR 8514
HIPHIP 110341

→ Request more catalogs and designations from VizieR