Home     Getting Started     New Pictures     Picture of the Day     Blog New!     Login  

HD 76151


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

IRS Spectra of Solar-Type Stars: A Search for Asteroid Belt Analogs
We report the results of a spectroscopic search for debris diskssurrounding 41 nearby solar-type stars, including eight planet-bearingstars, using the Infrared Spectrometer (IRS) on the Spitzer SpaceTelescope. With the accurate relative photometry of the IRS between 7and 34 μm we are able to look for excesses as small as ~2% ofphotospheric levels, with particular sensitivity to weak spectralfeatures. For stars with no excess, the 3 σ upper limit in a bandat 30-34 μm corresponds to ~75 times the brightness of our zodiacaldust cloud. Comparable limits at 8.5-13 μm correspond to ~1400 timesthe brightness of our zodiacal dust cloud. These limits correspond tomaterial located within the <1 to ~5 AU region that, in our solarsystem, originates predominantly from debris associated with theasteroid belt. We find excess emission longward of ~25 μm from fivestars, of which four also show excess emission at 70 μm. Thisemitting dust must be located in a region starting around 5-10 AU. Onestar has 70 μm emission but no IRS excess. In this case, the emittingregion must begin outside 10 AU; this star has a known radial velocityplanet. Only two stars of the five show emission shortward of 25 μm,where spectral features reveal the presence of a population of small,hot dust grains emitting in the 7-20 μm band. One of these stars, HD72905, is quite young (300 Myr), while the other, HD 69830, is olderthan 2 Gyr. The data presented here strengthen the results of previousstudies to show that excesses at 25 μm and shorter are rare: only 1out of 40 stars older than 1 Gyr or ~2.5% shows an excess. Asteroidbelts 10-30 times more massive than our own appear are rare amongmature, solar-type stars.

Frequency of Debris Disks around Solar-Type Stars: First Results from a Spitzer MIPS Survey
We have searched for infrared excesses around a well-defined sample of69 FGK main-sequence field stars. These stars were selected withoutregard to their age, metallicity, or any previous detection of IRexcess; they have a median age of ~4 Gyr. We have detected 70 μmexcesses around seven stars at the 3 σ confidence level. Thisextra emission is produced by cool material (<100 K) located beyond10 AU, well outside the ``habitable zones'' of these systems andconsistent with the presence of Kuiper Belt analogs with ~100 times moreemitting surface area than in our own planetary system. Only one star,HD 69830, shows excess emission at 24 μm, corresponding to dust withtemperatures >~300 K located inside of 1 AU. While debris disks withLdust/L*>=10-3 are rare around oldFGK stars, we find that the disk frequency increases from 2%+/-2% forLdust/L*>=10-4 to 12%+/-5% forLdust/L*>=10-5. This trend in thedisk luminosity distribution is consistent with the estimated dust inour solar system being within an order of magnitude greater or less thanthe typical level around similar nearby stars. Although there is nocorrelation of IR excess with metallicity or spectral type, there is aweak correlation with stellar age, with stars younger than a gigayearmore likely to have excess emission.

Dwarfs in the Local Region
We present lithium, carbon, and oxygen abundance data for a sample ofnearby dwarfs-a total of 216 stars-including samples within 15 pc of theSun, as well as a sample of local close giant planet (CGP) hosts (55stars) and comparison stars. The spectroscopic data for this work have aresolution of R~60,000, a signal-to-noise ratio >150, and spectralcoverage from 475 to 685 nm. We have redetermined parameters and derivedadditional abundances (Z>10) for the CGP host and comparison samples.From our abundances for elements with Z>6 we determine the meanabundance of all elements in the CGP hosts to range from 0.1 to 0.2 dexhigher than nonhosts. However, when relative abundances ([x/Fe]) areconsidered we detect no differences in the samples. We find nodifference in the lithium contents of the hosts versus the nonhosts. Theplanet hosts appear to be the metal-rich extension of local regionabundances, and overall trends in the abundances are dominated byGalactic chemical evolution. A consideration of the kinematics of thesample shows that the planet hosts are spread through velocity space;they are not exclusively stars of the thin disk.

A Comparative Study on Lithium Abundances in Solar-Type Stars With and Without Planets
We have investigated the abundance anomalies of lithium for stars withplanets in the temperature range of 5600-5900 K reported by Israelianand coworkers, as compared to 20 normal stars in the same temperatureand metallicity ranges. Our result indicates a higher probability oflithium depletion for stars with planets in the main-sequence stage. Itseems that stellar photospheric abundances of lithium in stars withplanets may be somewhat affected by the presence of planets. Twopossible mechanisms are considered to account for the lower Liabundances of stars with planets. One is related to the rotation-inducedmixing due to the conservation of angular momentum by the protoplanetarydisk, and the other is a shear instability triggered by planetmigration. These results provide new information on stellar evolutionand the lithium evolution of the Galaxy.

Spectroscopic characterization of a sample of southern visual binaries
Aims.We present the spectroscopic characterization of 56 pairs of visualbinaries with similar components, based on high resolution spectraacquired with FEROS at ESO La Silla. Methods: .For all stars, wemeasured radial and rotational velocities and CaII H&K emission. Results: .Five previously unknown double lined spectroscopic binarieswere found. Six other pairs show velocity differences that are notcompatible with the orbital motion of the wide pair, indicating thepresence of further companion(s) in the system. The fraction of visualbinaries that contain additional spectroscopic components is27±10%, compatible with other literature estimates. The ages ofthe components of the pairs derived from chromospheric activitytypically show apparent differences of about 0.2 dex. A few pairs show arather large difference in activity level, but in most cases this isconsistent with the variability of chromospheric emission observed forthe Sun along its magnetic cycle.

The Asiago Database of Spectroscopic Databases (ADSD)
Databases of observed stellar spectra are continuously being publishedand made publicly available, and the average number of stars perdatabase is increasing. This paper reviews the current status. TheAsiago Database of Spectroscopic Databases (ADSD) aims to provide acensus of publicly available libraries of observed stellar spectra, todocument their content and to homogenize their parameters for easierconsultation and access. Refereed journals, conference proceedings andpersonal web pages have been searched for libraries of a given minimumsize, properly documented and with data made publicly and directlyaccessible. A total of 294 databases (54 ultraviolet, 183 optical, 50infrared and 7 combined) have been found to match the selection criteriaand have been included in ADSD. They provide spectra of 16046 differentstars in electronic or printed formats. A card for each librarydescribes in a homogeneous way its aims, content, type of data, caveats,data download links, source paper, properties of included stars andmore. A dedicated web page allows direct access to ADSD, plans futureupdates, and provides interrogation tools to search all the librariesmatching given characteristics or including any given star.

Abundance ratios of volatile vs. refractory elements in planet-harbouring stars: hints of pollution?
We present the [ X/H] trends as a function of the elemental condensationtemperature TC in 88 planet host stars and in avolume-limited comparison sample of 33 dwarfs without detected planetarycompanions. We gathered homogeneous abundance results for many volatileand refractory elements spanning a wide range of T_C, from a few dozento several hundred kelvin. We investigate possible anomalous trends ofplanet hosts with respect to comparison sample stars to detect evidenceof possible pollution events. No significant differences are found inthe behaviour of stars with and without planets. This is consistent witha "primordial" origin of the metal excess in planet host stars. However,a subgroup of 5 planet host and 1 comparison sample stars stands out ashaving particularly high [ X/H] vs. TC slopes.

Abundances of refractory elements in the atmospheres of stars with extrasolar planets
Aims.This work presents a uniform and homogeneous study of chemicalabundances of refractory elements in 101 stars with and 93 without knownplanetary companions. We carry out an in-depth investigation of theabundances of Si, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Na, Mg and Al. The newcomparison sample, spanning the metallicity range -0.70< [Fe/H]<0.50, fills the gap that previously existed, mainly at highmetallicities, in the number of stars without known planets.Methods.Weused an enlarged set of data including new observations, especially forthe field "single" comparison stars . The line list previously studiedby other authors was improved: on average we analysed 90 spectral linesin every spectrum and carefully measured more than 16 600 equivalentwidths (EW) to calculate the abundances.Results.We investigate possibledifferences between the chemical abundances of the two groups of stars,both with and without planets. The results are globally comparable tothose obtained by other authors, and in most cases the abundance trendsof planet-host stars are very similar to those of the comparison sample.Conclusions.This work represents a step towards the comprehension ofrecently discovered planetary systems. These results could also beuseful for verifying galactic models at high metallicities andconsequently improve our knowledge of stellar nucleosynthesis andgalactic chemical evolution.

Oxygen abundances in planet-harbouring stars. Comparison of different abundance indicators
We present a detailed and uniform study of oxygen abundances in 155solar type stars, 96 of which are planet hosts and 59 of which form partof a volume-limited comparison sample with no known planets. EWmeasurements were carried out for the [O I] 6300 Å line and the OI triplet, and spectral synthesis was performed for several OH lines.NLTE corrections were calculated and applied to the LTE abundanceresults derived from the O I 7771-5 Å triplet. Abundances from [OI], the O I triplet and near-UV OH were obtained in 103, 87 and 77dwarfs, respectively. We present the first detailed and uniformcomparison of these three oxygen indicators in a large sample ofsolar-type stars. There is good agreement between the [O/H] ratios fromforbidden and OH lines, while the NLTE triplet shows a systematicallylower abundance. We found that discrepancies between OH, [O I] and the OI triplet do not exceed 0.2 dex in most cases. We have studied abundancetrends in planet host and comparison sample stars, and no obviousanomalies related to the presence of planets have been detected. Allthree indicators show that, on average, [O/Fe] decreases with [Fe/H] inthe metallicity range -0.8< [Fe/H] < 0.5. The planet host starspresent an average oxygen overabundance of 0.1-0.2 dex with respect tothe comparison sample.

Precise Differential Analysis of Stellar Metallicities: Application to Solar Analogs Including 16 Cyg A and B
A method is presented for very accurately establishing the differencesof the atmospheric parameters (the effective temperature, the surfacegravity, the microturbulent velocity, and the Fe abundance) between twosimilar stars by using the equivalent widths of Fe I and Fe II lines,which is a variant of the numerical solution-search approach developedby Takeda et al. (2002, PASJ, 54, 451), while being inspired by thespirit of the orthodox ``differential curve-of-growth'' procedure. Byapplying this technique to eight selected stars similar to the Sun [HD20630, 76151, 134987, 181655, 186408 (16 Cyg A), 186427 (16 Cyg B),195019, and 217014] along with the Sun itself, the parameter differencesbetween any pairs of these stars could be successfully determined toprecisions of ˜ 10 K (in ΔTeff), ˜ 0.02dex (inΔlog g), ˜0.02 km s-1 (in Δv t), and ˜0.01 dex (in ΔA Fe). Regarding 16 Cyg A and B, awell-known ``solar twin'' system where a planet has been detected onlyin B, the metallicities of these two components were concluded to beessentially the same to a level of ≲ 0.01 dex.

Lithium Abundances of F-, G-, and K-Type Stars: Profile-Fitting Analysis of the Li I 6708 Doublet
An extensive profile-fitting analysis was performed for the Li(+Fe)6707-6708Å feature of nearby 160 F-K dwarfs/subgiants (including27 planet-host stars) in the Galactic disk ( 7000 K ≳Teff ≳ 5000 K, -1 ≲ [Fe/H] ≲ +0.4), in orderto establish the photospheric lithium abundances of these stars. Thenon-LTE effect (though quantitatively insignificant) was taken intoaccount based on our statistical equilibrium calculations, which werecarried out on an adequate grid of models. Our results confirmed most ofthe interesting observational characteristics revealed by recentlypublished studies, such as the bimodal distribution of the Li abundancesfor stars at Teff ≳ 6000 K, the satisfactory agreementof the upper envelope of the A(Li) vs. [Fe/H] distribution with thetheoretical models, the existence of a positive correlation betweenA(Li) and the stellar mass, and the tendency of lower lithium abundancesof planet-host stars (as compared to stars without planets) at thenarrow ``transition'' region of 5900 K ≳ Teff ≳5800 K. The solar Li abundance derived from this analysis is 0.92 (H =12.00), which is by 0.24dex lower than the widely referenced standardvalue of 1.16.

Spectroscopic Study on the Atmospheric Parameters of Nearby F--K Dwarfs and Subgiants
Based on a collection of high-dispersion spectra obtained at OkayamaAstrophysical Observatory, the atmospheric parameters (Teff,log g, vt, and [Fe/H]) of 160 mid-F through early-K starswere extensively determined by the spectroscopic method using theequivalent widths of Fe I and Fe II lines along with the numericaltechnique of Takeda et al. (2002, PASJ, 54, 451). The results arecomprehensively discussed and compared with the parameter values derivedby different approaches (e.g., photometric colors, theoreticalevolutionary tracks, Hipparcos parallaxes, etc.) as well as with thepublished values found in various literature. It has been confirmed thatour purely spectroscopic approach yields fairly reliable and consistentresults.

Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs
We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.

Predicting the Length of Magnetic Cycles in Late-Type Stars
In this paper we present a modification of a local approximation of theso-called interface dynamo in an attempt to reproduce the length of themagnetic cycles for a sample of late-type stars. The sample consists of25 stars, observed during the Mount Wilson and Las Campanas long-termmonitoring campaigns, for which well-defined cycles have been detected.We have focused our efforts on reproducing general trends observed,namely, the dependence of the cycle length, Pcyc, on thestellar rotation period, Prot, rather than attempting toinfer from the dynamo model individual cycle lengths for each star. Inspite of the simplicity of the model, the results are promising. Thetrend of increasing cycle length with increasing rotation period isreproduced with a minimum of assumptions.

The Planet-Metallicity Correlation
We have recently carried out spectral synthesis modeling to determineTeff, logg, vsini, and [Fe/H] for 1040 FGK-type stars on theKeck, Lick, and Anglo-Australian Telescope planet search programs. Thisis the first time that a single, uniform spectroscopic analysis has beenmade for every star on a large Doppler planet search survey. We identifya subset of 850 stars that have Doppler observations sufficient todetect uniformly all planets with radial velocity semiamplitudes K>30m s-1 and orbital periods shorter than 4 yr. From this subsetof stars, we determine that fewer than 3% of stars with-0.5<[Fe/H]<0.0 have Doppler-detected planets. Above solarmetallicity, there is a smooth and rapid rise in the fraction of starswith planets. At [Fe/H]>+0.3 dex, 25% of observed stars have detectedgas giant planets. A power-law fit to these data relates the formationprobability for gas giant planets to the square of the number of metalatoms. High stellar metallicity also appears to be correlated with thepresence of multiple-planet systems and with the total detected planetmass. This data set was examined to better understand the origin of highmetallicity in stars with planets. None of the expected fossilsignatures of accretion are observed in stars with planets relative tothe general sample: (1) metallicity does not appear to increase as themass of the convective envelopes decreases, (2) subgiants with planetsdo not show dilution of metallicity, (3) no abundance variations for Na,Si, Ti, or Ni are found as a function of condensation temperature, and(4) no correlations between metallicity and orbital period oreccentricity could be identified. We conclude that stars with extrasolarplanets do not have an accretion signature that distinguishes them fromother stars; more likely, they are simply born in higher metallicitymolecular clouds.Based on observations obtained at Lick and Keck Observatories, operatedby the University of California, and the Anglo-Australian Observatories.

The Cornell High-Order Adaptive Optics Survey for Brown Dwarfs in Stellar Systems. I. Observations, Data Reduction, and Detection Analyses
In this first of a two-paper sequence, we report techniques and resultsof the Cornell High-Order Adaptive Optics Survey (CHAOS) for brown dwarfcompanions. At the time of this writing, this study represents the mostsensitive published population survey of brown dwarf companions tomain-sequence stars for separations akin to our own outer solar system.The survey, conducted using the Palomar 200 inch (5 m) Hale Telescope,consists of Ks coronagraphic observations of 80 main-sequencestars out to 22 pc. At 1" separation from a typical target system, thesurvey achieves median sensitivities 10 mag fainter than the parentstar. In terms of companion mass, the survey achieves typicalsensitivities of 25MJ (1 Gyr), 50MJ (solar age),and 60MJ (10 Gyr), using the evolutionary models of Baraffeand coworkers. Using common proper motion to distinguish companions fromfield stars, we find that no systems show positive evidence of asubstellar companion (searchable separation ~1"-15" projected separation~10-155 AU at the median target distance). In the second paper of theseries we will present our Monte Carlo population simulations.

On the ages of exoplanet host stars
We obtained spectra, covering the CaII H and K region, for 49 exoplanethost (EH) stars, observable from the southern hemisphere. We measuredthe chromospheric activity index, R'{_HK}. We compiled previouslypublished values of this index for the observed objects as well as theremaining EH stars in an effort to better smooth temporal variations andderive a more representative value of the average chromospheric activityfor each object. We used the average index to obtain ages for the groupof EH stars. In addition we applied other methods, such as: Isochrone,lithium abundance, metallicity and transverse velocity dispersions, tocompare with the chromospheric results. The kinematic method is a lessreliable age estimator because EH stars lie red-ward of Parenago'sdiscontinuity in the transverse velocity dispersion vs dereddened B-Vdiagram. The chromospheric and isochrone techniques give median ages of5.2 and 7.4 Gyr, respectively, with a dispersion of 4 Gyr. The medianage of F and G EH stars derived by the isochrone technique is 1-2 Gyrolder than that of identical spectral type nearby stars not known to beassociated with planets. However, the dispersion in both cases is large,about 2-4 Gyr. We searched for correlations between the chromosphericand isochrone ages and L_IR/L* (the excess over the stellarluminosity) and the metallicity of the EH stars. No clear tendency isfound in the first case, whereas the metallicy dispersion seems toslightly increase with age.

Sulphur abundance in Galactic stars
We investigate sulphur abundance in 74 Galactic stars by using highresolution spectra obtained at ESO VLT and NTT telescopes. For the firsttime the abundances are derived, where possible, from three opticalmultiplets: Mult. 1, 6, and 8. By combining our own measurements withdata in the literature we assemble a sample of 253 stars in themetallicity range -3.2  [Fe/H]  +0.5. Two important features,which could hardly be detected in smaller samples, are obvious from thislarge sample: 1) a sizeable scatter in [S/Fe] ratios around [Fe/H]˜-1; 2) at low metallicities we observe stars with [S/Fe]˜ 0.4, aswell as stars with higher [S/Fe] ratios. The latter do not seem to bekinematically different from the former ones. Whether the latter findingstems from a distinct population of metal-poor stars or simply from anincreased scatter in sulphur abundances remains an open question.

Abundances of Na, Mg and Al in stars with giant planets
We present Na, Mg and Al abundances in a set of 98 stars with knowngiant planets, and in a comparison sample of 41 “single”stars. The results show that the [X/H] abundances (with X = Na, Mg andAl) are, on average, higher in stars with giant planets, a resultsimilar to the one found for iron. However, we did not find any strongdifference in the [X/Fe] ratios, for a fixed [Fe/H], between the twosamples of stars in the region where the samples overlap. The data wasused to study the Galactic chemical evolution trends for Na, Mg and Aland to discuss the possible influence of planets on this evolution. Theresults, similar to those obtained by other authors, show that the[X/Fe] ratios all decrease as a function of metallicity up to solarvalues. While for Mg and Al this trend then becomes relatively constant,for Na we find indications of an upturn up to [Fe/H] values close to0.25 dex. For metallicities above this value the [Na/Fe] becomesconstant.

Abundance trends in kinematical groups of the Milky Way's disk
We have compiled a large catalogue of metallicities and abundance ratiosfrom the literature in order to investigate abundance trends of severalalpha and iron peak elements in the thin disk and the thick disk of theGalaxy. The catalogue includes 743 stars with abundances of Fe, O, Mg,Ca, Ti, Si, Na, Ni and Al in the metallicity range -1.30 < [Fe/H]< +0.50. We have checked that systematic differences betweenabundances measured in the different studies were lower than randomerrors before combining them. Accurate distances and proper motions fromHipparcos and radial velocities from several sources have been retreivedfor 639 stars and their velocities (U, V, W) and galactic orbits havebeen computed. Ages of 322 stars have been estimated with a Bayesianmethod of isochrone fitting. Two samples kinematically representative ofthe thin and thick disks have been selected, taking into account theHercules stream which is intermediate in kinematics, but with a probabledynamical origin. Our results show that the two disks are chemicallywell separated, they overlap greatly in metallicity and both showparallel decreasing alpha elements with increasing metallicity, in theinterval -0.80 < [Fe/H] < -0.30. The Mg enhancement with respectto Fe of the thick disk is measured to be 0.14 dex. An even largerenhancement is observed for Al. The thick disk is clearly older than thethin disk with tentative evidence of an AMR over 2-3 Gyr and a hiatus instar formation before the formation of the thin disk. We do not observea vertical gradient in the metallicity of the thick disk. The Herculesstream has properties similar to that of the thin disk, with a widerrange of metallicity. Metal-rich stars assigned to the thick disk andsuper-metal-rich stars assigned to the thin disk appear as outliers inall their properties.

A study of Cybele asteroids
We have used the 3.5 m New Technology Telescope at ESO, La Silla,to obtain spectra of 18 asteroids belonging to the Cybele group. Oneadditional Cybele asteroid was observed with the ESO 3.6 m telescope.From the spectra we have derived spectral slopes and taxonomyclassifications. Our observations show that spectrally red D-typeCybeles tend to be smaller than more spectrally neutral P- and C-typeobjects from this group. Similar colour-diameter trends have previouslybeen reported for other outer belt low albedo asteroids (Hildas andTrojans). We discuss possible reasons for this trend. In particular,the observed dominance of red objects for small diameters is consistentwith a space weathering scenario, where irradiation of asteroidregoliths with solar wind plasma neutralizes their surface colours dueto carbonization of originally reddish organic components. Collisionaldisruption of such large greyish "aged" P-type objects would produce anumber of redder D-type fragments lacking mature regoliths. Inaddition, the observed colour-diameter trend may be due to compositionaldifferences between D-, P- and C-type asteroids. P- and C-types may belacking at small diameters, since their materials are less susceptibleto collisional break-up than spectrally red D-type material. Asimultaneous contribution of both factors (compositional differences andspace weathering) to the observed trend is possible as well.Observations were made at the European Southern Observatory (ESO) withthe NTT telescope under program 56.F-0355 and the 3.6 m telescope underprogram 62.S-0133.

Fine structure of the chromospheric activity in Solar-type stars - The Hα line
A calibration of Hα as both a chromospheric diagnostic and an ageindicator is presented, complementing the works previously done on thissubject (\cite{herbig}; \cite{luca1}). The chromospheric diagnostic wasbuilt with a statistically significant sample, covering nine years ofobservations, and including 175 solar neighborhood stars. Regarding theage indicator, the presence of stars for which very accurate ages aredetermined, such as those belonging to clusters and kinematic groups,lends confidence to our analysis. We also investigate the possibilitythat stars of the same age might have gone through different tracks ofchromospheric decay, identifying - within the same age range - effectsof metallicity and mass. These parameters, however, as well as age, seemto be significant only for dwarf stars, losing their meaning when weanalyze stars in the subgiant branch. This result suggests that, inthese evolved stars, the emission mechanism cannot bemagnetohydrodynamical in nature, in agreement with recent models (Fawzyet al. 2002c, and references therein). The Sun is found to be a typicalstar in its Hα chromospheric flux, for its age, mass andmetallicity. As a byproduct of this work, we developed an automaticmethod to determine temperatures from the wings of Hα, which meansthe suppression of the error inherent to the visual procedure used inthe literature.Based on observations collected at Observatório do Pico dos Dias,operated by the Laboratório Nacional de Astrofísica, CNPq,Brazil.Table 5 is only available in electronic form at thehttp://www.edpsciences.org

Isochrone ages for field dwarfs: method and application to the age-metallicity relation
A new method is presented to compute age estimates from theoreticalisochrones using temperature, luminosity and metallicity data forindividual stars. Based on Bayesian probability theory, this methodavoids the systematic biases affecting simpler strategies and providesreliable estimates of the age probability distribution function forlate-type dwarfs. Basic assumptions concerning the a priori parameterdistribution suitable for the solar neighbourhood are combined with thelikelihood assigned to the observed data to yield the complete posteriorage probability. This method is especially relevant for G dwarfs in the3-15 Gyr range of ages, crucial to the study of the chemical anddynamical history of the Galaxy. In many cases, it yields markedlydifferent results from the traditional approach of reading the derivedage from the isochrone nearest to the data point. We show that thestrongest process affecting the traditional approach is that of stronglyfavouring computed ages near the end-of-main-sequence lifetime. TheBayesian method compensates for this potential bias and generallyassigns much higher probabilities to lower main-sequence ages, comparedwith short-lived evolved stages. This has a strong influence on anyapplication to galactic studies, especially given the presentuncertainties on the absolute temperature scale of the stellar evolutionmodels. In particular, the known mismatch between the model predictionsand the observations for moderately metal-poor dwarfs (-1 < [Fe/H]< -0.3) has a dramatic effect on the traditional age determination.We apply our method to the classic sample of Edvardsson et al., whoderived the age-metallicity relation (AMR) of 189 field dwarfs withprecisely determined abundances. We show how much of the observedscatter in the AMR is caused by the interplay between the systematicbiases affecting the traditional age determination, the colour mismatchwith the evolution models and the presence of undetected binaries. Usingnew parallax, temperature and metallicity data, our age determinationfor the same sample indicates that the intrinsic dispersion in the AMRis at most 0.15 dex and probably lower. In particular, we show that old,metal-rich objects ([Fe/H]~ 0.0 dex, age > 5 Gyr) and young,metal-poor objects ([Fe/H] < -0.5 dex, age < 6 Gyr) in manyobserved AMR plots are artefacts caused by too simple a treatment of theage determination. The incompatibility of those AMR plots with awell-mixed interstellar medium may therefore only be apparent.Incidentally, our results tend to restore confidence in the method ofage determination from the chromospheric activity for field dwarfs.

Spectroscopic observations of Jupiter Trojans
We present the results of a campaign of spectroscopic observations ofJupiter Trojan asteroids. Thirty-four objects were observed during threeruns in July and November 1998, and March 2002 using the Danish 1.54-mtelescope at ESO. The covered spectral range was between 5000 and 9000Å. Our observations include objects belonging both L4to L5 clouds. According to analyses of previousinvestigations of Trojans, the spectra of different taxonomic classescan be separated on the basis of the slope of the reflectance spectrum.The large majority of the objects of our sample have been found tobelong to the D taxonomic class, but we found also objects of P- andC-type. In two cases, we found also evidence of blueish spectral trends.Our data are important, since they allow us to substantially enlarge thewhole data set of available Trojan spectra.

The Indo-US Library of Coudé Feed Stellar Spectra
We have obtained spectra for 1273 stars using the 0.9 m coudéfeed telescope at Kitt Peak National Observatory. This telescope feedsthe coudé spectrograph of the 2.1 m telescope. The spectra havebeen obtained with the no. 5 camera of the coudé spectrograph anda Loral 3K×1K CCD. Two gratings have been used to provide spectralcoverage from 3460 to 9464 Å, at a resolution of ~1 Å FWHMand at an original dispersion of 0.44 Å pixel-1. For885 stars we have complete spectra over the entire 3460 to 9464 Åwavelength region (neglecting small gaps of less than 50 Å), andpartial spectral coverage for the remaining stars. The 1273 stars havebeen selected to provide broad coverage of the atmospheric parametersTeff, logg, and [Fe/H], as well as spectral type. The goal ofthe project is to provide a comprehensive library of stellar spectra foruse in the automated classification of stellar and galaxy spectra and ingalaxy population synthesis. In this paper we discuss thecharacteristics of the spectral library, viz., details of theobservations, data reduction procedures, and selection of stars. We alsopresent a few illustrations of the quality and information available inthe spectra. The first version of the complete spectral library is nowpublicly available from the National Optical Astronomy Observatory(NOAO) via ftp and http.

The Rise of the s-Process in the Galaxy
From newly obtained high-resolution, high signal-to-noise ratio spectrathe abundances of the elements La and Eu have been determined over thestellar metallicity range -3<[Fe/H]<+0.3 in 159 giant and dwarfstars. Lanthanum is predominantly made by the s-process in the solarsystem, while Eu owes most of its solar system abundance to ther-process. The changing ratio of these elements in stars over a widemetallicity range traces the changing contributions of these twoprocesses to the Galactic abundance mix. Large s-process abundances canbe the result of mass transfer from very evolved stars, so to identifythese cases we also report carbon abundances in our metal-poor stars.Results indicate that the s-process may be active as early as[Fe/H]=-2.6, although we also find that some stars as metal-rich as[Fe/H]=-1 show no strong indication of s-process enrichment. There is asignificant spread in the level of s-process enrichment even at solarmetallicity.

Synthetic Lick Indices and Detection of α-enhanced Stars. II. F, G, and K Stars in the -1.0 < [Fe/H] < +0.50 Range
We present an analysis of 402 F, G, and K solar neighborhood stars, withaccurate estimates of [Fe/H] in the range -1.0 to +0.5 dex, aimed at thedetection of α-enhanced stars and at the investigation of theirkinematical properties. The analysis is based on the comparison of 571sets of spectral indices in the Lick/IDS system, coming from fourdifferent observational data sets, with synthetic indices computed withsolar-scaled abundances and with α-element enhancement. We useselected combinations of indices to single out α-enhanced starswithout requiring previous knowledge of their main atmosphericparameters. By applying this approach to the total data set, we obtain alist of 60 bona fide α-enhanced stars and of 146 stars withsolar-scaled abundances. The properties of the detected α-enhancedand solar-scaled abundance stars with respect to their [Fe/H] values andkinematics are presented. A clear kinematic distinction betweensolar-scaled and α-enhanced stars was found, although a one-to-onecorrespondence to ``thin disk'' and ``thick disk'' components cannot besupported with the present data.

Nearby stars of the Galactic disk and halo. III.
High-resolution spectroscopic observations of about 150 nearby stars orstar systems are presented and discussed. The study of these and another100 objects of the previous papers of this series implies that theGalaxy became reality 13 or 14 Gyr ago with the implementation of amassive, rotationally-supported population of thick-disk stars. The veryhigh star formation rate in that phase gave rise to a rapid metalenrichment and an expulsion of gas in supernovae-driven Galactic winds,but was followed by a star formation gap for no less than three billionyears at the Sun's galactocentric distance. In a second phase, then, thethin disk - our ``familiar Milky Way'' - came on stage. Nowadays ittraces the bright side of the Galaxy, but it is also embedded in a hugecoffin of dead thick-disk stars that account for a large amount ofbaryonic dark matter. As opposed to this, cold-dark-matter-dominatedcosmologies that suggest a more gradual hierarchical buildup throughmergers of minor structures, though popular, are a poor description forthe Milky Way Galaxy - and by inference many other spirals as well - if,as the sample implies, the fossil records of its long-lived stars do notstick to this paradigm. Apart from this general picture that emergeswith reference to the entire sample stars, a good deal of the presentwork is however also concerned with detailed discussions of manyindividual objects. Among the most interesting we mention the bluestraggler or merger candidates HD 165401 and HD 137763/HD 137778, thelikely accretion of a giant planet or brown dwarf on 59 Vir in itsrecent history, and HD 63433 that proves to be a young solar analog at\tau˜200 Myr. Likewise, the secondary to HR 4867, formerly suspectednon-single from the Hipparcos astrometry, is directly detectable in thehigh-resolution spectroscopic tracings, whereas the visual binary \chiCet is instead at least triple, and presumably even quadruple. Withrespect to the nearby young stars a complete account of the Ursa MajorAssociation is presented, and we provide as well plain evidence foranother, the ``Hercules-Lyra Association'', the likely existence ofwhich was only realized in recent years. On account of its rotation,chemistry, and age we do confirm that the Sun is very typical among itsG-type neighbors; as to its kinematics, it appears however not unlikelythat the Sun's known low peculiar space velocity could indeed be thecause for the weak paleontological record of mass extinctions and majorimpact events on our parent planet during the most recent Galactic planepassage of the solar system. Although the significance of thiscorrelation certainly remains a matter of debate for years to come, wepoint in this context to the principal importance of the thick disk fora complete census with respect to the local surface and volumedensities. Other important effects that can be ascribed to this darkstellar population comprise (i) the observed plateau in the shape of theluminosity function of the local FGK stars, (ii) a small thoughsystematic effect on the basic solar motion, (iii) a reassessment of theterm ``asymmetrical drift velocity'' for the remainder (i.e. the thindisk) of the stellar objects, (iv) its ability to account for the bulkof the recently discovered high-velocity blue white dwarfs, (v) itsmajor contribution to the Sun's ˜220 km s-1 rotationalvelocity around the Galactic center, and (vi) the significant flatteningthat it imposes on the Milky Way's rotation curve. Finally we note ahigh multiplicity fraction in the small but volume-complete local sampleof stars of this ancient population. This in turn is highly suggestivefor a star formation scenario wherein the few existing single stellarobjects might only arise from either late mergers or the dynamicalejection of former triple or higher level star systems.

Stellar Chemical Signatures and Hierarchical Galaxy Formation
To compare the chemistries of stars in the Milky Way dwarf spheroidal(dSph) satellite galaxies with stars in the Galaxy, we have compiled alarge sample of Galactic stellar abundances from the literature. Whenkinematic information is available, we have assigned the stars tostandard Galactic components through Bayesian classification based onGaussian velocity ellipsoids. As found in previous studies, the[α/Fe] ratios of most stars in the dSph galaxies are generallylower than similar metallicity Galactic stars in this extended sample.Our kinematically selected stars confirm this for the Galactic halo,thin-disk, and thick-disk components. There is marginal overlap in thelow [α/Fe] ratios between dSph stars and Galactic halo stars onextreme retrograde orbits (V<-420 km s-1), but this is notsupported by other element ratios. Other element ratios compared in thispaper include r- and s-process abundances, where we find a significantoffset in the [Y/Fe] ratios, which results in a large overabundance in[Ba/Y] in most dSph stars compared with Galactic stars. Thus, thechemical signatures of most of the dSph stars are distinct from thestars in each of the kinematic components of the Galaxy. This resultrules out continuous merging of low-mass galaxies similar to these dSphsatellites during the formation of the Galaxy. However, we do not ruleout very early merging of low-mass dwarf galaxies, since up to one-halfof the most metal-poor stars ([Fe/H]<=-1.8) have chemistries that arein fair agreement with Galactic halo stars. We also do not rule outmerging with higher mass galaxies, although we note that the LMC and theremnants of the Sgr dwarf galaxy are also chemically distinct from themajority of the Galactic halo stars. Formation of the Galaxy's thickdisk by heating of an old thin disk during a merger is also not ruledout; however, the Galaxy's thick disk itself cannot be comprised of theremnants from a low-mass (dSph) dwarf galaxy, nor of a high-mass dwarfgalaxy like the LMC or Sgr, because of differences in chemistry.The new and independent environments offered by the dSph galaxies alsoallow us to examine fundamental assumptions related to thenucleosynthesis of the elements. The metal-poor stars ([Fe/H]<=-1.8)in the dSph galaxies appear to have lower [Ca/Fe] and [Ti/Fe] than[Mg/Fe] ratios, unlike similar metallicity stars in the Galaxy.Predictions from the α-process (α-rich freeze-out) would beconsistent with this result if there have been a lack of hypernovae indSph galaxies. The α-process could also be responsible for thevery low Y abundances in the metal-poor stars in dSph's; since [La/Eu](and possibly [Ba/Eu]) are consistent with pure r-process results, thelow [Y/Eu] suggests a separate r-process site for this light(first-peak) r-process element. We also discuss SNe II rates and yieldsas other alternatives, however. In stars with higher metallicities([Fe/H]>=-1.8), contributions from the s-process are expected; [(Y,La, and Ba)/Eu] all rise as expected, and yet [Ba/Y] is still muchhigher in the dSph stars than similar metallicity Galactic stars. Thisresult is consistent with s-process contributions from lower metallicityAGB stars in dSph galaxies, and is in good agreement with the slowerchemical evolution expected in the low-mass dSph galaxies relative tothe Galaxy, such that the build-up of metals occurs over much longertimescales. Future investigations of nucleosynthetic constraints (aswell as galaxy formation and evolution) will require an examination ofmany stars within individual dwarf galaxies.Finally, the Na-Ni trend reported in 1997 by Nissen & Schuster isconfirmed in Galactic halo stars, but we discuss this in terms of thegeneral nucleosynthesis of neutron-rich elements. We do not confirm thatthe Na-Ni trend is related to the accretion of dSph galaxies in theGalactic halo.

The Brown Dwarf Desert at 75-1200 AU
We present results of a comprehensive infrared coronagraphic search forsubstellar companions to nearby stars. The research consisted of (1) a178-star survey at Steward and Lick observatories, with opticalfollow-up from Keck Observatory, capable of detecting companions withmasses greater than 30 MJ, and semimajor axes between about140 to 1200 AU; (2) a 102-star survey using the Keck Telescope, capableof detecting extrasolar brown dwarfs and planets typically more massivethan 10 MJ, with semimajor axes between about 75 and 300 AU.Only one brown dwarf companion was detected, and no planets. Thefrequency of brown dwarf companions to G, K, and M stars orbitingbetween 75 and 300 AU is measured to be 1%+/-1%, the most precisemeasurement of this quantity to date. The frequency of massive (greaterthan 30 MJ) brown dwarf companions at 120-1200 AU is found tobe f=0.7%+/-0.7%. The frequency of giant planet companions with massesbetween 5 and 10 MJ orbiting between 75 and 300 AU ismeasured here for the first time to be no more than ~3%. Together withother surveys that encompass a wide range of orbital separations, theseresults imply that substellar objects with masses between 12 and 75MJ form only rarely as companions to stars. Theories of starformation that could explain these data are only now beginning toemerge.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Hydra
Right ascension:08h54m17.90s
Declination:-05°26'04.0"
Apparent magnitude:6
Distance:17.094 parsecs
Proper motion RA:-412.1
Proper motion Dec:28.2
B-T magnitude:6.813
V-T magnitude:6.069

Catalogs and designations:
Proper Names
HD 1989HD 76151
TYCHO-2 2000TYC 4873-1792-1
USNO-A2.0USNO-A2 0825-06620432
BSC 1991HR 3538
HIPHIP 43726

→ Request more catalogs and designations from VizieR