Home     Getting Started     New Pictures     Picture of the Day     Blog New!     Login  

TYC 1492-36-1


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Bayesian inference of stellar parameters and interstellar extinction using parallaxes and multiband photometry
Astrometric surveys provide the opportunity to measure the absolutemagnitudes of large numbers of stars, but only if the individualline-of-sight extinctions are known. Unfortunately, extinction is highlydegenerate with stellar effective temperature when estimated frombroad-band optical/infrared photometry. To address this problem, Iintroduce a Bayesian method for estimating the intrinsic parameters of astar and its line-of-sight extinction. It uses both photometry andparallaxes in a self-consistent manner in order to provide anon-parametric posterior probability distribution over the parameters.The method makes explicit use of domain knowledge by employing theHertzsprung-Russell Diagram (HRD) to constrain solutions and to ensurethat they respect stellar physics. I first demonstrate this method byusing it to estimate effective temperature and extinction from BVJHKdata for a set of artificially reddened Hipparcos stars, for whichaccurate effective temperatures have been estimated from high-resolutionspectroscopy. Using just the four colours, we see the expected strongdegeneracy (positive correlation) between the temperature andextinction. Introducing the parallax, apparent magnitude and the HRDreduces this degeneracy and improves both the precision (reduces theerror bars) and the accuracy of the parameter estimates, the latter byabout 35 per cent. The resulting accuracy is about 200 K in temperatureand 0.2 mag in extinction. I then apply the method to estimate theseparameters and absolute magnitudes for some 47 000 F, G, K Hipparcosstars which have been cross-matched with Two-Micron All-Sky Survey(2MASS). The method can easily be extended to incorporate the estimationof other parameters, in particular metallicity and surface gravity,making it particularly suitable for the analysis of the 109stars from Gaia.

Speckle Interferometry at the Blanco and SOAR Telescopes in 2008 and 2009
The results of speckle interferometric measurements of binary andmultiple stars conducted in 2008 and 2009 at the Blanco and SOAR 4 mtelescopes in Chile are presented. A total of 1898 measurements of 1189resolved pairs or sub-systems and 394 observations of 285 un-resolvedtargets are listed. We resolved for the first time 48 new pairs, 21 ofwhich are new sub-systems in close visual multiple stars. Typicalinternal measurement precision is 0.3 mas in both coordinates, typicalcompanion detection capability is ?m ~ 4.2 at 0farcs15 separation.These data were obtained with a new electron-multiplication CCD camera;data processing is described in detail, including estimation ofmagnitude difference, observational errors, detection limits, andanalysis of artifacts. We comment on some newly discovered pairs andobjects of special interest.

Mesures d'etoiles doubles faites a Nice.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1978A&AS...33..275M&db_key=AST

Mesures d'etoiles doubles faites AU refracteur de 38cm de l'Observatoire de Nice.
Not Available

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Bootes
Right ascension:15h10m35.06s
Declination:+20°21'10.4"
Apparent magnitude:8.904
Distance:68.729 parsecs
Proper motion RA:-116
Proper motion Dec:84.5
B-T magnitude:9.788
V-T magnitude:8.977

Catalogs and designations:
Proper Names
TYCHO-2 2000TYC 1492-36-1
USNO-A2.0USNO-A2 1050-07418866
HIPHIP 74259

→ Request more catalogs and designations from VizieR