Home     Getting Started     New Pictures     Picture of the Day     Blog New!     Login  

HD 99827


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Unraveling the Origins of Nearby Young Stars
A systematic search for close conjunctions and clusterings in the pastof nearby stars younger than the Pleiades is undertaken, which mayreveal the time, location, and mechanism of formation of these oftenisolated, disconnected from clusters and star-forming regions, objects.The sample under investigation includes 101 T Tauri, post-TT, andmain-sequence stars and stellar systems with signs of youth, culled fromthe literature. Their Galactic orbits are traced back in time and nearapproaches are evaluated in time, distance, and relative velocity.Numerous clustering events are detected, providing clues to the originof very young, isolated stars. Each star's orbit is also matched withthose of nearby young open clusters, OB and TT associations andstar-forming molecular clouds, including the Ophiuchus, Lupus, CoronaAustralis, and Chamaeleon regions. Ejection of young stars from openclusters is ruled out for nearly all investigated objects, but thenearest OB associations in Scorpius-Centaurus, and especially, the denseclouds in Ophiuchus and Corona Australis have likely played a major rolein the generation of the local streams (TWA, Beta Pic, andTucana-Horologium) that happen to be close to the Sun today. The core ofthe Tucana-Horologium association probably originated from the vicinityof the Upper Scorpius association 28 Myr ago. A few proposed members ofthe AB Dor moving group were in conjunction with the coeval Cepheus OB6association 38 Myr ago.

Pre-main sequence star Proper Motion Catalogue
We measured the proper motions of 1250 pre-main sequence (PMS) stars andof 104 PMS candidates spread over all-sky major star-forming regions.This work is the continuation of a previous effort where we obtainedproper motions for 213 PMS stars located in the major southernstar-forming regions. These stars are now included in this present workwith refined astrometry. The major upgrade presented here is theextension of proper motion measurements to other northern and southernstar-forming regions including the well-studied Orion and Taurus-Aurigaregions for objects as faint as V≤16.5. We improve the precision ofthe proper motions which benefited from the inclusion of newobservational material. In the PMS proper motion catalogue presentedhere, we provide for each star the mean position and proper motion aswell as important photometric information when available. We providealso the most common identifier. The rms of proper motions vary from 2to 5 mas/yr depending on the available sources of ancient positions anddepending also on the embedding and binarity of the source. With thiswork, we present the first all-sky catalogue of proper motions of PMSstars.

Statistical Constraints for Astrometric Binaries with Nonlinear Motion
Useful constraints on the orbits and mass ratios of astrometric binariesin the Hipparcos catalog are derived from the measured proper motiondifferences of Hipparcos and Tycho-2 (Δμ), accelerations ofproper motions (μ˙), and second derivatives of proper motions(μ̈). It is shown how, in some cases, statistical bounds can beestimated for the masses of the secondary components. Two catalogs ofastrometric binaries are generated, one of binaries with significantproper motion differences and the other of binaries with significantaccelerations of their proper motions. Mathematical relations betweenthe astrometric observables Δμ, μ˙, and μ̈ andthe orbital elements are derived in the appendices. We find a remarkabledifference between the distribution of spectral types of stars withlarge accelerations but small proper motion differences and that ofstars with large proper motion differences but insignificantaccelerations. The spectral type distribution for the former sample ofbinaries is the same as the general distribution of all stars in theHipparcos catalog, whereas the latter sample is clearly dominated bysolar-type stars, with an obvious dearth of blue stars. We point outthat the latter set includes mostly binaries with long periods (longerthan about 6 yr).

Young Stars Near the Sun
Until the late 1990s the rich Hyades and the sparse UMa clusters werethe only coeval, comoving concentrations of stars known within 60 pc ofEarth. Both are hundreds of millions of years old. Then beginning in thelate 1990s the TW Hydrae Association, the Tucana/Horologium Association,the Pictoris Moving Group, and the AB Doradus Moving Group wereidentified within 60 pc of Earth, and the Chamaeleontis cluster wasfound at 97 pc. These young groups (ages 8 50 Myr), along with othernearby, young stars, will enable imaging and spectroscopic studies ofthe origin and early evolution of planetary systems.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Proper motions of faint ROSAT WTT stars in the Chamaeleon region
We present proper motions of 59 stars of the ROSAT All-Sky Survey (RASS)located in direction of the Chamaeleon star forming region (SFR) in themagnitude range B=5.1 - 17 mag. Proper motions of the fainter stars werenewly derived utilizing survey Schmidt plates from the GSC II platearchive and from a set of special plates taken with the ESO Schmidttelescope. The vector point diagram (VPD) indicates that the certifiedWTT stars cluster away from the region occupied by the brighterpre-main-sequence stars (PMS) in Cha I. The distance to this newassociation is estimated at ~ 100 pc, sensibly smaller than the 150 pcgenerally assumed for the SFR. This yields an upper limit of 2 km s(-1)for the velocity dispersion of this new kinematic group. The de-reddenedCM diagram of the group members suggest the WTT stars are still PMSobjects, but older (3-30 Myr) and less massive than previousdeterminations. These revised age estimates, the newly derived grouppeculiar velocity, and current distance estimates to the Cha I/II/IIIcomplex would favour in-situ formation against that predicted by highvelocity cloud models. Finally, based on a redetermination of thepeculiar motions of stars and gas, we speculate that the whole SFRoriginated from the local Orion spur as a result of more classicalmechanisms like interactions with the spiral arms. Based on observationscollected at the European Southern Observatory (Chile) and on data fromthe Hipparcos astrometry satellite. Table~1 is available only inelectronic form at the CDS via anonymous ftp at 130.79.128.5.

Kinematics of T Tauri stars in Chamaeleon
We study the kinematics of T Tauri stars (TTS) located in the cores ofthe Chamaeleon clouds as well as far off these clouds. Our samplecomprises 2 early type stars known to be related to Cha i, 6 classical(CTTS) and 6 weak-line T Tauri stars (WTTS) known before the ROSATmission, and 8 bona-fide pre-main sequence (PMS) stars as well as 23presumably older stars discovered with ROSAT (Alcalaet al. 1995; Covinoet al. 1997). Altogether we present proper motions for 45 stars, takenfrom the Hipparcos, ACT and STARNET catalogues. For 12 stars of oursample parallaxes measured by Hipparcos are available, and we use themto derive constraints on the distance distribution of the other stars inour sample. Our analysis of the proper motions allows us to divide thesample into several subgroups. We analyse the motions of the stars inconnection with different star formation scenarios and find themconsistent with both the high velocity cloud (HVC) impact model (Lepine& Duvert 1994) and the cloudlet model (Feigelson 1996), whereas thedata seem to be inconsistent with any kind of a dynamical ejectionmodel.

HIPPARCOS results for ROSAT-discovered young stars
Out of ~ 500 Lithium-rich ROSAT counterparts, which were presumed to below-mass pre-main sequence stars, 21 stars have been observed byHIPPARCOS. We study their parallaxes, proper motions, and photometricdata. For 7 out of 10 Taurus and Lupus stars in our sample, propermotions and parallaxes are not inconsistent with membership to theseassociations, while most of the stars in Chamaeleon and Scorpius appearto be young foreground stars. Combined with ground based photometry andspectroscopy, HIPPARCOS parallaxes allow us to place 15 stars on an H-Rdiagram. All these 15 stars lie above the Zero-Age-Main-Sequence andthus are indeed pre-main sequence stars with ages from 1 to 15 Myr. Onlytwo of the stars are located on the Hayashi-tracks, whereas the other 13are post-TTauri stars located on radiative tracks. Although the sampleis admittedly small, containing only 3% of the total sample ofLithium-rich ROSAT counterparts, it does not confirm recent predictionsby other authors: We find no stars in the age range from 20 to 100 Myr.The foreground pre-main sequence stars may have been ejected toward us,or they belong to the Gould Belt system, a plane filled with youngstars.

A study of the Chamaeleon star forming region from the ROSAT all-sky survey. I. X-ray observations and optical identifications.
We present the observations of the ROSAT all-sky survey (RASS) in thedirection of the Chamaeleon cloud complex, as well as the spectroscopicidentifications of the detected X-ray sources. The main purpose of thisidentification program was the search for low mass pre-main sequencestars. Sixteen previously known PMS stars were detected with highconfidence by ROSAT. Eight are classical T Tauri stars and eight areweak-line T Tauri stars, Seventy-seven new weak-line T Tauri stars wereidentified on the basis of the presence of strong Li λ 6707absorption, spectral type later than F0 and chromospheric emission. Wegive coordinates and count rates of the X-ray sources, and presentoptical spectra and finding charts for the sources identified opticallyas new pre-main sequence stars. Optical UBV(RI)_c_ and near-infraredJHKLM photometry for this sample of stars is also provided. In addition,6 new dKe-dMe candidates are found among the RASS sources.

Stroemgren photometry of F- and G-type stars brighter than V = 9.6. I. UVBY photometry
Within the framework of a large photometric observing program, designedto investigate the Galaxy's structure and evolution, Hβ photometryis being made for about 9000 stars. As a by-product, supplementary uvbyphotometry has been made. The results are presented in a cataloguecontaining 6924 uvby observations of 6190 stars, all south ofδ=+38deg. The overall internal rms errors of one observation(transformed to the standard system) of a program star in the interval6.5

The chemical evolution of the solar neighborhood. I - A bias-free reduction technique and data sample
The possible ways of measuring the age-metallicity relation for thegalactic disk in the neighborhood of the sun are discussed. It is shownthat the use of a field star sample chosen on the basis of effectivetemperature introduces a bias which results in a monotonic increase inthe metal abundance of the disk with time. However, if theage-metallicity relation for the disk can be shown to satisfy certaincriteria, the bias introduced in such a sample can be neglected: thegalactic disk apparently satisfies the criteria. It is concluded that asample analyzed through the use of uvby and H(beta) photometry inconjunction with a self-consistent set of theoretical isochronesprovides the least biased, most accurate estimate of the age-metallicityrelation for the disk.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Octans
Right ascension:11h25m17.75s
Declination:-84°57'16.4"
Apparent magnitude:7.646
Distance:82.85 parsecs
Proper motion RA:-47.8
Proper motion Dec:9.2
B-T magnitude:8.17
V-T magnitude:7.69

Catalogs and designations:
Proper Names
HD 1989HD 99827
TYCHO-2 2000TYC 9511-1593-1
USNO-A2.0USNO-A2 0000-00853278
HIPHIP 55746

→ Request more catalogs and designations from VizieR