Home     Getting Started     New Pictures     Picture of the Day     Blog New!     Login  

HD 40307


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 pc-The Southern Sample
We are obtaining spectra, spectral types, and basic physical parametersfor the nearly 3600 dwarf and giant stars earlier than M0 in theHipparcos catalog within 40 pc of the Sun. Here we report on resultsfor 1676 stars in the southern hemisphere observed at Cerro TololoInter-American Observatory and Steward Observatory. These resultsinclude new, precise, homogeneous spectral types, basic physicalparameters (including the effective temperature, surface gravity, andmetallicity [M/H]), and measures of the chromospheric activity of ourprogram stars. We include notes on astrophysically interesting stars inthis sample, the metallicity distribution of the solar neighborhood, anda table of solar analogs. We also demonstrate that the bimodal nature ofthe distribution of the chromospheric activity parameterlogR'HK depends strongly on the metallicity, andwe explore the nature of the ``low-metallicity'' chromosphericallyactive K-type dwarfs.

Effective temperature scale and bolometric corrections from 2MASS photometry
We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.

Simulating observable comets. III. Real stellar perturbers of the Oort cloud and their output
Context: .This is the third of a series of papers on simulating themechanisms acting currently on the Oort cloud and producing the observedlong-period comets.Aims.In this paper we investigate the influence ofcurrent stellar perturbers on the Oort cloud of comets under thesimultaneous galactic disk tide. We also analyse the past motion of theobserved long-period comets under the same dynamical model to verify thewidely used definition of dynamically new comets. Methods.The action ofnearby stars and the galactic disk tide on the Oort cloud was simulated.The original orbital elements of all 386 long-period comets of qualityclasses 1 and 2 were calculated, and their motion was followednumerically for one orbital revolution into the past, down to theprevious perihelion. We also simulated the output of the close futurepass of GJ 710 through the Oort cloud. Results.The simulated flux of theobservable comets resulting from the current stellar and galacticperturbations, as well as the distribution of perihelion direction, wasobtained. The same data are presented for the future passage of GJ 710.A detailed description is given of the past evolution of aphelion andperihelion distances of the observed long-period comets. Conclusions. Weobtained no fingerprints of the stellar perturbations in the simulatedflux and its directional structure. The mechanisms producing observablecomets are highly dominated by galactic disk tide because all currentstellar perturbers are too weak. Also the effect of the close passage ofthe star GJ 710 is very difficult to recognise on the background of theGalactic-driven observable comets. For the observed comets we found only45 to be really dynamically "new" according to our definition based onthe previous perihelion distance value.

Abundances of refractory elements in the atmospheres of stars with extrasolar planets
Aims.This work presents a uniform and homogeneous study of chemicalabundances of refractory elements in 101 stars with and 93 without knownplanetary companions. We carry out an in-depth investigation of theabundances of Si, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Na, Mg and Al. The newcomparison sample, spanning the metallicity range -0.70< [Fe/H]<0.50, fills the gap that previously existed, mainly at highmetallicities, in the number of stars without known planets.Methods.Weused an enlarged set of data including new observations, especially forthe field "single" comparison stars . The line list previously studiedby other authors was improved: on average we analysed 90 spectral linesin every spectrum and carefully measured more than 16 600 equivalentwidths (EW) to calculate the abundances.Results.We investigate possibledifferences between the chemical abundances of the two groups of stars,both with and without planets. The results are globally comparable tothose obtained by other authors, and in most cases the abundance trendsof planet-host stars are very similar to those of the comparison sample.Conclusions.This work represents a step towards the comprehension ofrecently discovered planetary systems. These results could also beuseful for verifying galactic models at high metallicities andconsequently improve our knowledge of stellar nucleosynthesis andgalactic chemical evolution.

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs
We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.

Abundances of Na, Mg and Al in stars with giant planets
We present Na, Mg and Al abundances in a set of 98 stars with knowngiant planets, and in a comparison sample of 41 “single”stars. The results show that the [X/H] abundances (with X = Na, Mg andAl) are, on average, higher in stars with giant planets, a resultsimilar to the one found for iron. However, we did not find any strongdifference in the [X/Fe] ratios, for a fixed [Fe/H], between the twosamples of stars in the region where the samples overlap. The data wasused to study the Galactic chemical evolution trends for Na, Mg and Aland to discuss the possible influence of planets on this evolution. Theresults, similar to those obtained by other authors, show that the[X/Fe] ratios all decrease as a function of metallicity up to solarvalues. While for Mg and Al this trend then becomes relatively constant,for Na we find indications of an upturn up to [Fe/H] values close to0.25 dex. For metallicities above this value the [Na/Fe] becomesconstant.

C, S, Zn and Cu abundances in planet-harbouring stars
We present a detailed and uniform study of C, S, Zn and Cu abundances ina large set of planet host stars, as well as in a homogeneous comparisonsample of solar-type dwarfs with no known planetary-mass companions.Carbon abundances were derived by EW measurement of two C I opticallines, while spectral syntheses were performed for S, Zn and Cu. Weinvestigated possible differences in the behaviours of the volatiles C,S and Zn and in the refractory Cu in targets with and without knownplanets in order to check possible anomalies due to the presence ofplanets. We found that the abundance distributions in stars withexoplanets are the high [Fe/H] extensions of the trends traced by thecomparison sample. All volatile elements we studied show [X/Fe] trendsdecreasing with [Fe/H] in the metallicity range -0.8< [Fe/H] <0.5, with significantly negative slopes of -0.39±0.04 and-0.35±0.04 for C and S, respectively. A comparison of ourabundances with those available in the literature shows good agreementin most cases.Based on observations collected at the La Silla Observatory, ESO(Chile), with the CORALIE spectrograph at the 1.2-m Euler Swisstelescope and with the FEROS spectrograph at the 1.52-m and 2.2-m ESOtelescopes, at the Paranal Observatory, ESO (Chile), using the UVESspectrograph at the VLT/UT2 Kueyen telescope, and with the UES and SARGspectrographs at the 4-m William Hershel Telescope (WHT) and at the3.5-m TNG telescope, respectively, both at La Palma (Canary Islands).Tables 4-16 are only available in electronic form athttp://www.edpsciences.org

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Spectroscopic [Fe/H] for 98 extra-solar planet-host stars. Exploring the probability of planet formation
We present stellar parameters and metallicities, obtained from adetailed spectroscopic analysis, for a large sample of 98 stars known tobe orbited by planetary mass companions (almost all known targets), aswell as for a volume-limited sample of 41 stars not known to host anyplanet. For most of the stars the stellar parameters are revisedversions of the ones presented in our previous work. However, we alsopresent parameters for 18 stars with planets not previously published,and a compilation of stellar parameters for the remaining 4 planet-hostsfor which we could not obtain a spectrum. A comparison of our stellarparameters with values of Teff, log g, and [Fe/H] availablein the literature shows a remarkable agreement. In particular, ourspectroscopic log g values are now very close to trigonometric log gestimates based on Hipparcos parallaxes. The derived [Fe/H] values arethen used to confirm the previously known result that planets are moreprevalent around metal-rich stars. Furthermore, we confirm that thefrequency of planets is a strongly rising function of the stellarmetallicity, at least for stars with [Fe/H] > 0. While only about 3%of the solar metallicity stars in the CORALIE planet search sample werefound to be orbited by a planet, this number increases to more than 25%for stars with [Fe/H] above +0.3. Curiously, our results also suggestthat these percentages might remain relatively constant for values of[Fe/H] lower than about solar, increasing then linearly with the massfraction of heavy elements. These results are discussed in the contextof the theories of planetary formation.Based on observations collected at the La Silla Observatory, ESO(Chile), with the CORALIE spectrograph at the 1.2-m Euler Swisstelescope and the FEROS spectrograph at the 1.52-m and 2.2-m ESOtelescopes, with the VLT/UT2 Kueyen telescope (Paranal Observatory, ESO,Chile) using the UVES spectrograph (Observing run 67.C-0206, in servicemode), with the TNG and William Herschel Telescopes, both operated atthe island of La Palma, and with the ELODIE spectrograph at the 1.93-mtelescope at the Observatoire de Haute Provence.

Lithium in stars with exoplanets
We present a comparison of the lithium abundances of stars with andwithout planetary-mass companions. New lithium abundances are reportedin 79 planet hosts and 38 stars from a comparison sample. When the Liabundances of planet host stars are compared with the 157 stars in thesample of field stars of Chen et al. (\cite{Chen2001}) we find that theLi abundance distribution is significantly different, and that there isa possible excess of Li depletion in planet host stars with effectivetemperatures in the range 5600-5850 K, whereas we find no significantdifferences in the temperature range 5850-6350 K. We have searched forstatistically significant correlations between the Li abundance ofparent stars and various parameters of the planetary companions. We donot find any strong correlation, although there are may be a hint of apossible gap in the Li distribution of massive planet host stars.Based on observations collected at the La Silla Observatory, ESO(Chile), with the CORALIE spectrograph at the 1.2 m Euler Swisstelescope, and with the FEROS spectrograph at the 1.52 m ESO telescope,and using the UES spectrograph at the 4.2 m William Herschel Telescope(WHT) and SARG spectrograph at the 3.5 m Telescopio Nazional Galileo onLa Palma (Canary Islands).

Chemical abundances of planet-host stars. Results for alpha and Fe-group elements
In this paper, we present a study of the abundances of Si, Ca, Sc, Ti,V, Cr, Mn, Co, and Ni in a large set of stars known to harbor giantplanets, as well as in a comparison sample of stars not known to haveany planetary-mass companions. We have checked for possible chemicaldifferences between planet hosts and field stars without known planets.Our results show that overall, and for a given value of [Fe/H], theabundance trends for the planet hosts are nearly indistinguishable fromthose of the field stars. In general, the trends show nodiscontinuities, and the abundance distributions of stars with giantplanets are high [Fe/H] extensions to the curves traced by the fielddwarfs without planets. The only elements that might present slightdifferences between the two groups of stars are V, Mn, and to a lesserextent Ti and Co. We also use the available data to describe galacticchemical evolution trends for the elements studied. When comparing theresults with former studies, a few differences emerge for the high[Fe/H] tail of the distribution, a region that is sampled withunprecedented detail in our analysis.Based on observations collected at the La Silla Observatory, ESO(Chile), with the CORALIE spectrograph at the 1.2-m Euler Swisstelescope and the FEROS spectrograph at the 1.52-m ESO telescope, withthe VLT/UT2 Kueyen telescope (Paranal Observatory, ESO, Chile) using theUVES spectrograph (Observing run 67.C-0206, in service mode), with theTNG and William Herschel Telescopes, both operated at the island of LaPalma, and with the ELODIE spectrograph at the 1.93-m telescope at theObservatoire de Haute Provence.

Statistical cataloging of archival data for luminosity class IV-V stars. II. The epoch 2001 [Fe/H] catalog
This paper describes the derivation of an updated statistical catalog ofmetallicities. The stars for which those metallicities apply are ofspectral types F, G, and K, and are on or near the main sequence. Theinput data for the catalog are values of [Fe/H] published before 2002February and derived from lines of weak and moderate strength. Theanalyses used to derive the data have been based on one-dimensional LTEmodel atmospheres. Initial adjustments which are applied to the datainclude corrections to a uniform temperature scale which is given in acompanion paper (see Taylor \cite{t02}). After correction, the data aresubjected to a statistical analysis. For each of 941 stars considered,the results of that analysis include a mean value of [Fe/H], an rmserror, an associated number of degrees of freedom, and one or moreidentification numbers for source papers. The catalog of these resultssupersedes an earlier version given by Taylor (\cite{t94b}).Catalog is only available in electronic form at the CDS via anonymousftp cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/731

Statistical cataloging of archival data for luminosity class IV-V stars. I. The epoch 2001 temperature catalog
This paper is one of a pair in which temperatures and metallicitycatalogs for class IV-V stars are considered. The temperature catalogdescribed here is derived from a calibration based on stellar angulardiameters. If published calibrations of this kind are compared by usingcolor-index transformations, temperature-dependent differences among thecalibrations are commonly found. However, such differences are minimizedif attention is restricted to calibrations based on Johnson V-K. Acalibration of this sort from Di Benedetto (\cite{dib98}) is thereforetested and adopted. That calibration is then applied to spectroscopicand photometric data, with the latter predominating. Cousins R-Iphotometry receives special attention because of its high precision andlow metallicity sensitivity. Testing of temperatures derived from thecalibration suggests that their accuracy and precision are satisfactory,though further testing will be warranted as new results appear. Thesetemperatures appear in the catalog as values of theta equiv5040/T(effective). Most of these entries are accompanied by measured orderived values of Cousins R-I. Entries are given for 951 stars.Catalog is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/721

Extrasolar planets around HD 196050, HD 216437 and HD 160691
We report precise Doppler measurements of the stars HD 216437, HD 196050and HD 160691 obtained with the Anglo-Australian Telescope using theUCLES spectrometer together with an iodine cell as part of theAnglo-Australian Planet Search. Our measurements reveal periodicKeplerian velocity variations that we interpret as evidence for planetsin orbit around these solar type stars. HD 216437 has a period of 1294+/- 250 d, a semi-amplitude of 38 +/- 3 m s-1 and aneccentricity of 0.33 +/- 0.09. The minimum (M sin i) mass of thecompanion is 2.1 +/- 0.3 MJUP and the semi-major axis is 2.4+/- 0.5 au. HD 196050 has a period of 1300 +/- 230 d, a semi-amplitudeof 49 +/- 8 m s-1 and an eccentricity of 0.19 +/- 0.09. Theminimum mass of the companion is 2.8 +/- 0.5 MJUP and thesemi-major axis is 2.4 +/- 0.5 au. We also report further observationsof the metal-rich planet bearing star HD 160691. Our new solutionconfirms the previously reported planet and shows a trend indicating asecond, longer-period companion. These discoveries add to the growingnumbers of mildly eccentric, long-period extrasolar planets aroundmetal-rich Sun-like stars.

K dwarfs and the chemical evolution of the solar cylinder
K dwarfs have lifetimes older than the present age of the Galactic disc,and are thus ideal stars for investigating the chemical evolution of thedisc. We have developed several photometric metallicity indicators for Kdwarfs, based on a sample of accurate spectroscopic metallicities for 34disc and halo G and K dwarfs. The photometric metallicities lead us todevelop a metallicity index for K dwarfs based only on their position inthe colour-absolute-magnitude diagram. Metallicities have beendetermined for 431 single K dwarfs drawn from the Hipparcos catalogue,selecting the stars by absolute magnitude and removing multiple systems.The sample is essentially a complete reckoning of the metal content innearby K dwarfs. We use stellar isochrones to mark the stars by mass,and select a subset of 220 of the stars, which is complete within anarrow mass interval. We fit the data with a model of the chemicalevolution of the solar cylinder. We find that only a modest cosmicscatter is required to fit our age-metallicity relation. The modelassumes two main infall episodes for the formation of the halo-thickdisc and thin disc, respectively. The new data confirm that the solarneighbourhood formed on a long time-scale of the order of 7 Gyr.

Echelle spectroscopy of Caii HK activity in Southern Hemisphere planet search targets
We present the results of ultraviolet echelle spectroscopy of a sampleof 59 F, G, K and M stars from the Anglo-Australian Planet Search targetlist. Caii activity indices, which are essential in the interpretationof planet detection claims, have been determined for these stars andplaced on the Mount Wilson R 'HK system.

A revision of the solar neighbourhood metallicity distribution
We present a revised metallicity distribution of dwarfs in the solarneighbourhood. This distribution is centred on solar metallicity. Weshow that previous metallicity distributions, selected on the basis ofspectral type, are biased against stars with solar metallicity orhigher. A selection of G-dwarf stars is inherently biased againstmetal-rich stars and is not representative of the solar neighbourhoodmetallicity distribution. Using a sample selected on colour, we obtain adistribution where approximately half the stars in the solarneighbourhood have metallicities higher than [Fe/H]=0. The percentage ofmid-metal-poor stars ([Fe/H]<-0.5) is approximately 4 per cent, inagreement with present estimates of the thick disc. In order to have ametallicity distribution comparable to chemical evolution modelpredictions, we convert the star fraction to mass fraction, and showthat another bias against metal-rich stars affects dwarf metallicitydistributions, due to the colour (or spectral type) limits of thesamples. Reconsidering the corrections resulting from the increasingthickness of the stellar disc with age, we show that the simpleclosed-box model with no instantaneous recycling approximation gives areasonable fit to the observed distribution. Comparisons with theage-metallicity relation and abundance ratios suggest that the simpleclosed-box model may be a viable model of the chemical evolution of theGalaxy at solar radius.

The metal-rich nature of stars with planets
With the goal of confirming the metallicity ``excess'' present in starswith planetary-mass companions, we present in this paper ahigh-precision spectroscopic study of a sample of dwarfs included in theCORALIE extrasolar planet survey. The targets were chosen according tothe basic criteria that 1) they formed part of a limited volume and 2)they did not present the signature of a planetary host companion. A fewstars with planets were also observed and analysed; namely, HD6434, HD 13445 (Gl 86), HD16141, HD 17051 (iota Hor), HD19994, HD 22049 (epsilon Eri), HD28185, HD 38529, HD52265, HD 190228, HD210277 and HD 217107. For some of theseobjects there had been no previous spectroscopic studies. Thespectroscopic analysis was done using the same technique as in previouswork on the metallicity of stars with planets, thereby permitting adirect comparison of the results. The work described in this paper thusrepresents the first uniform and unbiased comparison between stars withand without planetary-mass companions in a volume-limited sample. Theresults show that 1) stars with planets are significantly metal-rich,and 2) that the source of the metallicity is most probably``primordial''. The results presented here may impose seriousconstraints on planetary system formation and evolution models. Based onobservations collected at the La Silla Observatory, ESO (Chile), withthe spectrograph at the Euler Swiss telescope, with the spectrograph atthe 1.52-m ESO telescope (Observing run 66.C-0116 B), and using the UESspectrograph at the 4-m William Hershel Telescope (WHT), at La Palma(Canary Islands).

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Pictor
Right ascension:05h54m04.24s
Declination:-60°01'24.5"
Apparent magnitude:7.156
Distance:12.829 parsecs
Proper motion RA:-52.5
Proper motion Dec:-59.7
B-T magnitude:8.36
V-T magnitude:7.256

Catalogs and designations:
Proper Names
HD 1989HD 40307
TYCHO-2 2000TYC 8892-1247-1
USNO-A2.0USNO-A2 0225-02547421
HIPHIP 27887

→ Request more catalogs and designations from VizieR