Home     Getting Started     New Pictures     Picture of the Day     Blog New!     Login  

TYC 8845-285-1


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Random forest automated supervised classification of Hipparcos periodic variable stars
We present an evaluation of the performance of an automatedclassification of the Hipparcos periodic variable stars into 26 types.The sub-sample with the most reliable variability types available in theliterature is used to train supervised algorithms to characterize thetype dependencies on a number of attributes. The most useful attributesevaluated with the random forest methodology include, in decreasingorder of importance, the period, the amplitude, the V-I colour index,the absolute magnitude, the residual around the folded light-curvemodel, the magnitude distribution skewness and the amplitude of thesecond harmonic of the Fourier series model relative to that of thefundamental frequency. Random forests and a multi-stage scheme involvingBayesian network and Gaussian mixture methods lead to statisticallyequivalent results. In standard 10-fold cross-validation (CV)experiments, the rate of correct classification is between 90 and 100per cent, depending on the variability type. The main mis-classificationcases, up to a rate of about 10 per cent, arise due to confusion betweenSPB and ACV blue variables and between eclipsing binaries, ellipsoidalvariables and other variability types. Our training set and thepredicted types for the other Hipparcos periodic stars are availableonline.

A catalogue of young runaway Hipparcos stars within 3 kpc from the Sun
Traditionally, runaway stars are O- and B-type stars with large peculiarvelocities. We would like to extend this definition to young stars (upto ?50 Myr) of any spectral type and to identify those present in theHipparcos catalogue by applying different selection criteria, such aspeculiar space velocities or peculiar one-dimensional velocities.Runaway stars are important for studying the evolution of multiple starsystems or star clusters, as well as for identifying the origins ofneutron stars. We compile the distances, proper motions, spectral types,luminosity classes, V magnitudes and B-V colours, and we utilizeevolutionary models from different authors to obtain star ages. We studya sample of 7663 young Hipparcos stars within 3 kpc from the Sun. Theradial velocities are obtained from the literature. We investigate thedistributions of the peculiar spatial velocity and the peculiar radialvelocity as well as the peculiar tangential velocity and itsone-dimensional components and we obtain runaway star probabilities foreach star in the sample. In addition, we look for stars that aresituated outside any OB association or OB cluster and the Galactic planeas well as stars for which the velocity vector points away from themedian velocity vector of neighbouring stars or the surrounding local OBassociation/cluster (although the absolute velocity might be small). Wefind a total of 2547 runaway star candidates (with a contamination ofnormal Population I stars of 20 per cent at most). Thus, aftersubtracting these 20 per cent, the runaway frequency among young starsis about 27 per cent. We compile a catalogue of runaway stars, which isavailable via VizieR.

Study of globular cluster M53: new variables, distance, metallicity
Aims: We study the variable star content of the globular clusterM53 to compute the physical parameters of theconstituting stars and the distance of the cluster. Methods:Covering two adjacent seasons in 2007 and 2008, new photometric data aregathered for 3048 objects in the field of M53. Byusing the OIS (optimal image subtraction) method and subsequently TFA(trend filtering algorithm), we search for variables in the full sampleby using discrete Fourier transformation and box-fitting least squaresmethods. We select variables based on the statistics related to thesemethods combined with visual inspection. Results: We identified12 new variables (2 RR Lyrae stars, 7 short periodic stars - 3 of themare SX Phe stars - and 3 long-period variables). No eclipsing binarieswere found in the present sample. Except for the 3 (hitherto unknown)Blazhko RR Lyrae (two RRab and an RRc) stars, no multiperiodic variableswere found. We showed that after proper period shift, the PLC(period-luminosity-color) relation for the first overtone RR Lyraesample tightly follows the one spanned by the fundamental stars.Furthermore, the slope is in agreement with that derived from otherclusters. Based on the earlier Baade-Wesselink calibration of the PLCrelations, the derived reddening-free distance modulus ofM53 is 16.31±0.04 mag, corresponding to adistance modulus of 18.5 mag for the Large Magellanic Cloud. From theFourier parameters of the RRab stars we obtained an average ironabundance of -1.58± 0.03 (error of the mean). This is ~0.5 dexhigher than the overall abundance of the giants as given in theliterature and derived in this paper from the three-color photometry ofgiants. We suspect that the source of this discrepancy (observable alsoin other, low-metallicity clusters) is the lack of a sufficient numberof low-metallicity objects in the calibrating sample of the Fouriermethod.Table 1 is only available in electronic form at http://www.aanda.orgPhotometric data are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/507/803

The luminosities and distance scales of type II Cepheid and RR Lyrae variables
Infrared and optical absolute magnitudes are derived for the type IICepheids κ Pav and VY Pyx using revised Hipparcos parallaxes andfor κ Pav, V553 Cen and SW Tau from pulsational parallaxes.Revised Hipparcos and HST parallaxes for RR Lyrae agree satisfactorilyand are combined in deriving absolute magnitudes. Phase-corrected J, Hand Ks mags are given for 142 Hipparcos RR Lyraes based onTwo-Micron All-Sky Survey observations. Pulsation and trigonometricalparallaxes for classical Cepheids are compared to establish the bestvalue for the projection factor (p) used in pulsational analyses.The MV of RR Lyrae itself is 0.16 +/- 0.12 mag brighter thanpredicted from an MV-[Fe/H] relation based on RR Lyrae starsin the Large Magellanic Cloud (LMC) at a modulus of 18.39 +/- 0.05 asfound from classical Cepheids. This is consistent with the prediction ofCatelan & Cortés that it is overluminous for its metallicity.The results for the metal- and carbon-rich Galactic disc stars, V553 Cenand SW Tau, each with small internal errors (+/-0.08 mag) have a meandeviation of only 0.02 mag from the period-luminosity (PL) relationestablished by Matsunaga et al. for type II Cepheids in globularclusters and with a zero-point based on the same LMC-scale. Comparingdirectly the luminosities of these two stars with published data on typeII Cepheids in the LMC and in the Galactic bulge leads to an LMC modulusof 18.37 +/- 0.09 and a distance to the Galactic Centre of R0= 7.64 +/- 0.21kpc. The data for VY Pyx agree with these results withinthe uncertainties set by its parallax. Evidence is presented thatκ Pav may have a close companion and possible implications of thisare discussed. If the pulsational parallax of this star is incorporatedin the analyses, the distance scales just discussed will be increased by~0.15 +/- 0.15 mag. V553 Cen and SW Tau show that at optical wavelengthsPL relations are wider for field stars than for those in globularclusters. This is probably due to a narrower range of masses in thelatter case.

Pulsational and evolutionary analysis of the double-mode RR Lyrae star BSCom
We derive the basic physical parameters of the field double-mode RRLyrae star BSCom from its observed periods and the requirement ofconsistency between the pulsational and evolutionary constraints. Byusing the current solar-scaled horizontal branch evolutionary models ofPietrinferni et al. and our linear non-adiabatic purely radiativepulsational models, we get M/Msolar = 0.698 +/- 0.004,log(L/Lsolar) = 1.712 +/- 0.005, Teff = 6840 +/-14K, [Fe/H] = -1.67 +/- 0.01, where the errors are standard deviationsassuming uniform age distribution along the full range of uncertainty inage. The last two parameters are in a good agreement with the onesderived from the observed BVIC colours and the updated ATLAS9stellar atmosphere models. We get Teff = 6842 +/- 10K, [Fe/H]= -1.58 +/- 0.11, where the errors are purely statistical ones. It isremarkable that the derived parameters are nearly independent of stellarage at early evolutionary stages. Later stages, corresponding to theevolution towards the asymptotic giant branch, are most probablyexcluded because the required high temperatures are less likely tosatisfy the constraints posed by the colours. We also show that ourconclusions are only weakly sensitive to non-linear period shiftspredicted by current hydrodynamical models.

The GEOS RR Lyr Survey
Not Available

The GEOS RR Lyr Survey
Not Available

Photoelectric Minima of Selected Eclipsing Binaries and Maxima of Pulsating Stars
Not Available

Proper identification of RR Lyrae stars brighter than 12.5 mag
RR Lyrae stars are of great importance for investigations of Galacticstructure. However, a complete compendium of all RR-Lyraes in the solarneighbourhood with accurate classifications and coordinates does notexist to this day. Here we present a catalogue of 561 local RR-Lyraestars (V_max ≤ 12.5 mag) according to the magnitudes given in theCombined General Catalogue of Variable Stars (GCVS) and 16 fainter ones.The Tycho2 catalogue contains ≃100 RR Lyr stars. However, manyobjects have inaccurate coordinates in the GCVS, the primary source ofvariable star information, so that a reliable cross-identification isdifficult. We identified RR Lyrae from both catalogues based on anintensive literature search. In dubious cases we carried out photometryof fields to identify the variable. Mennessier & Colome (2002,A&A, 390, 173) have published a paper with Tyc2-GCVSidentifications, but we found that many of their identifications arewrong.

RR Lyrae stars: kinematics, orbits and z-distribution
RR Lyrae stars in the Milky Way are good tracers to study the kinematicbehaviour and spatial distribution of older stellar populations. Arecently established well documented sample of 217 RR Lyr stars withV<12.5 mag, for which accurate distances and radial velocities aswell as proper motions from the Hipparcos and Tycho-2 catalogues areavailable, has been used to reinvestigate these structural parameters.The kinematic parameters allowed to calculate the orbits of the stars.Nearly 1/3 of the stars of our sample have orbits staying near the MilkyWay plane. Of the 217 stars, 163 have halo-like orbits fulfilling one ofthe following criteria: Θ < 100 km s-1, orbiteccentricity >0.4, and normalized maximum orbital z-distance>0.45. Of these stars roughly half have retrograde orbits. Thez-distance probability distribution of this sample shows scale heightsof 1.3±0.1 kpc for the disk component and 4.6±0.3 kpc forthe halo component. With our orbit statistics method we found a(vertical) spatial distribution which, out to z=20 kpc, is similar tothat found with other methods. This distribution is also compatible withthe ones found for blue (HBA and sdB) halo stars. The circular velocityΘ, the orbit eccentricity, orbit z-extent and [Fe/H] are employedto look for possible correlations. If any, it is that the metal poorstars with [Fe/H] <1.0 have a wide symmetric distribution aboutΘ=0, thus for this subsample on average a motion independent ofdisk rotation. We conclude that the Milky Way possesses a halo componentof old and metal poor stars with a scale height of 4-5 kpc having randomorbits. The presence in our sample of a few metal poor stars (thus partof the halo population) with thin disk-like orbits is statistically notsurprising. The midplane density ratio of halo to disk stars is found tobe 0.16, a value very dependent on proper sample statistics.

Iron abundances derived from RR Lyrae light curves and low-dispersion spectroscopy
With the aid of the All Sky Automated Survey (ASAS) database on theGalactic field, we compare the iron abundances of fundamental mode RRLyrae stars derived from the Fourier parameters with those obtained fromlow-dispersion spectroscopy. We show from a set of 79 stars, distinctfrom the original calibrating sample of the Fourier method and selectedwithout quality control, that almost all discrepant estimates are theresults of some defects or peculiarities either in the photometry or inthe spectroscopy. Omitting objects deviating by more than 0.4 dex, theremaining subsample of 64 stars yields Fourier abundances that fit thespectroscopic ones with σ=0.20 dex. Other, more stringentselection criteria and different Fourier decompositions lead to smallersubsamples and concomitant better agreement, down to σ=0.16 dex.Except perhaps for two variables among the 163 stars, comprised of theASAS variables and those of the original calibrating set of the Fouriermethod, all discrepant values can be accounted for by observationalnoise and insufficient data coverage. We suggest that the agreement canbe further improved when new, more accurate spectroscopic data becomeavailable for a test with the best photometric data. As a by-product ofthis analysis, we also compute revised periods and select Blazhkovariables.

Metallicity Dependence of the Blazhko Effect
The microlensing surveys, such as OGLE or MACHO, have led to thediscovery of thousands of RRLyr stars in the Galactic bulge and in theMagellanic Clouds, allowing for detailed investigation of these stars,especially the still mysterious Blazhko phenomenon. Higher incidencerate of Blazhko (BL) variables in the more metal-rich Galactic bulgethan in the LMC, suggests that occurrence of Blazhko effect correlateswith metallicity. To investigate this problem, we calibrate thephotometric method of determining the metallicity of RRab stars in theI-band and apply it to the OGLE Galactic bulge and LMC data. In bothsystems, metallicities of non Blazhko and Blazhko variables are close toeach other. The LMC Blazhko pulsators prefer slightly lowermetallicities. The different metallicities of the Galactic bulge and theLMC, cannot explain the observed incidence rates.As a by-product of our metallicity estimates, we investigate theluminosity-metallicity relation, finding a steep dependence of theluminosity on [Fe/H].

A pulsational approach to near-infrared and visual magnitudes of RR Lyr stars
In this paper, we present an improved theoretical scenario concerningnear-infrared and visual magnitudes of RR Lyr variables, as based onup-to-date pulsating models. New relations connecting V and K absolutemagnitudes with periods, mass, luminosity and metal content arediscussed separately for fundamental and first-overtone pulsators. Wealso show that the V-K colours are predicted to supply tight constraintson the pulsator intrinsic luminosity. On this basis, we revisit the caseof the prototype variable RR Lyr, showing that the parallax inferred bythis new pulsational approach appears in close agreement with HubbleSpace Telescope absolute parallax. Moreover, available K and Vmeasurements for field and cluster RR Lyr variables with known reddeningand metal content are used to derive a relation connecting the Kabsolute magnitude to period and metallicity (MK-[Fe/H]-logP)as well as a new calibration of the MV-[Fe/H] relation. Thecomparison between theoretical prescriptions and observations suggeststhat RR Lyr stars in the field and in galactic globular clusters (GGCs)should have quite similar evolutionary histories. The comparison betweentheory and observations also discloses a general agreement that supportsthe reliability of the current pulsational scenario. On the contrary,current empirical absolute magnitudes based on the Baade-Wesselink (BW)method suggest relations with a zero-point which is fainter than ispredicted by pulsation models, together with a milder metallicitydependence. However, preliminary results based on a new calibration ofthe BW method provided by Cacciari et al. (2000) for RR Cet and SW Andappear in a much better agreement with the pulsational predictions.

Consistent distances from Baade-Wesselink analyses of Cepheids and RR Lyraes
By using the same algorithm in the Baade-Wesselink analyses of GalacticRR Lyrae and Cepheid variables, it is shown that, within 0.03-mag1σ statistical error, they yield the same distance modulus for theLarge Magellanic Cloud. By fixing the zero-point of thecolour-temperature calibration to those of the current infrared fluxmethods and using updated period-luminosity-colour relations, we get anaverage value of 18.55 for the true distance modulus of the LMC.

BVI Time-Series Data of the Galactic Globular Cluster NGC 3201. I. RR Lyrae Stars
We present Johnson BV- and Kron-Cousins I-band time-series datacollected over three consecutive nights in a region of 13arcmin2 centered on the Galactic globular cluster (GGC) NGC3201. The time sampling of current CCD data allowed us to deriveaccurate light curves and, in turn, mean magnitudes and colors for asample of 53 RR Lyrae stars. To overcome the thorny problem ofdifferential reddening affecting this cluster, we derived new empiricalrelations connecting the intrinsic B-V and V-I colors of fundamental(RRab) RR Lyrae stars to the luminosity amplitude, the metallicity, andthe pulsation period. The key features of these relations are thefollowing: (1) they rely on stellar parameters, which are not affectedby reddening; (2) they supply accurate estimates of intrinsic colorsacross the fundamental instability strip and cover a wide metallicityrange; (3) they were derived by neglecting the RR Lyrae stars that areaffected by amplitude modulation. Moreover, the zero point of the E(B-V)reddening scale was empirically checked using the large sample of RRLyrae stars in M3 from Corwin & Carney, a GGC affected by avanishing reddening. According to these relations we estimatedindividual reddenings for RR Lyrae stars in our sample and the mainresults we found are the following: (1) The mean cluster reddening basedon E(B-V) color excesses is =0.30+/-0.03. This estimate isslightly higher than the mean reddening evaluations available in theliterature or based on the dust infrared map by Schlegel, Finkbeiner,& Davis, i.e., =0.26+/-0.02. Note that the angularresolution of this map is ~6', whereas for current reddening map it is~1'. (2) The mean cluster reddening based on E(V-I) color excesses is=0.36+/-0.05. This estimate is only marginally inagreement with the mean cluster reddening obtained using the reddeningmap by von Braun & Mateo and derived by adopting cluster turnoffstars, i.e., =0.25+/-0.07. On the other hand, currentintrinsic spread among individual reddenings (~0.2 mag) agrees quitewell with the estimate provided by previous authors. It is noteworthythat previous mean cluster reddenings are in very good agreement withvalues obtained using the empirical relations for intrinsic RR Lyraecolors provided by Kovacs & Walker. (3) According to currentindividual E(B-V) and E(V-I) reddenings and theoretical predictions forhorizontal-branch stars, we found that the true distance modulus forthis cluster is 13.32+/-0.06 mag. This determination is somehowsupported by the comparison between predicted and empirical pulsationamplitudes. (4) The comparison between present luminosity amplitudes andestimates available in the literature discloses that approximately 30%of fundamental RR Lyrae stars are affected by amplitude modulation (theBlazhko effect). This finding confirms empirical evidence originallybrought out by Szeidl and by Smith. Based on observations collected atthe European Southern Observatory, La Silla, Chile.

Subsystems of RR Lyrae Variable Stars in Our Galaxy
We have used published, high-accuracy, ground-based and satelliteproper-motion measurements, a compilation of radial velocities, andphotometric distances to compute the spatial velocities and Galacticorbital elements for 174 RR Lyrae (ab) variable stars in the solarneighborhood. The computed orbital elements and published heavy-elementabundances are used to study relationships between the chemical,spatial, and kinematic characteristics of nearby RR Lyrae variables. Weobserve abrupt changes of the spatial and kinematic characteristics atthe metallicity [Fe/H]≈-0.95 and also when the residual spatialvelocities relative to the LSR cross the critical value V res≈290km/s. This provides evidence that the general population of RR Lyraestars is not uniform and includes at least three subsystems occupyingdifferent volumes in the Galaxy. Based on the agreement between typicalparameters for corresponding subsystems of RR Lyrae stars and globularclusters, we conclude that metal-rich stars and globular clusters belongto a rapidly rotating and fairly flat, thick-disk subsystem with a largenegative vertical metallicity gradient. Objects with larger metaldeficiencies can, in turn, be subdivided into two populations, but usingdifferent criteria for stars and clusters. We suggest that field starswith velocities below the critical value and clusters with extremelyblue horizontal branches form a spherical, slowly rotating subsystem ofthe protodisk halo, which has a common origin with the thick disk; thissubsystem has small but nonzero radial and vertical metallicitygradients. The dimensions of this subsystem, estimated from theapogalactic radii of orbits of field stars, are approximately the same.Field stars displaying more rapid motion and clusters with redderhorizontal branches constitute the spheroidal subsystem of the accretedouter halo, which is approximately a factor of three larger in size thanthe first two subsystems. It has no metallicity gradients; most of itsstars have eccentric orbits, many display retrograde motion in theGalaxy, and their ages are comparatively low, supporting the hypothesisthat the objects in this subsystem had an extragalactic origin.

Bias Properties of Extragalactic Distance Indicators. XI. Methods to Correct for Observational Selection Bias for RR Lyrae Absolute Magnitudes from Trigonometric Parallaxes Expected from the Full-Sky Astrometric Mapping Explorer Satellite
A short history is given of the development of the correction forobservation selection bias inherent in the calibration of absolutemagnitudes using trigonometric parallaxes. The developments have beendue to Eddington, Jeffreys, Trumpler & Weaver, Wallerstein,Ljunggren & Oja, West, Lutz & Kelker, after whom the bias isnamed, Turon Lacarrieu & Crézé, Hanson, Smith, andmany others. As a tutorial to gain an intuitive understanding of severalcomplicated trigonometric bias problems, we study a toy bias model of aparallax catalog that incorporates assumed parallax measuring errors ofvarious severities. The two effects of bias errors on the derivedabsolute magnitudes are (1) the Lutz-Kelker correction itself, whichdepends on the relative parallax error δπ/π and the spatialdistribution, and (2) a Malmquist-like ``incompleteness'' correction ofopposite sign due to various apparent magnitude cutoffs as they areprogressively imposed on the catalog. We calculate the bias propertiesusing simulations involving 3×106 stars of fixedabsolute magnitude using Mv=+0.6 to imitate RR Lyraevariables in the mean. These stars are spread over a spherical volumebounded by a radius 50,000 pc with different spatial densitydistributions. The bias is demonstrated by first using a fixed rmsparallax uncertainty per star of 50 μas and then using a variable rmsaccuracy that ranges from 50 μas at apparent magnitude V=9 to 500μas at V=15 according to the specifications for the Full-SkyAstrometric Mapping Explorer (FAME) satellite to be launched in 2004.The effects of imposing magnitude limits and limits on the``observer's'' error, δπ/π, are displayed. We contrast themethod of calculating mean absolute magnitude directly from theparallaxes where bias corrections are mandatory, with an inverse methodusing maximum likelihood that is free of the Lutz-Kelker bias, althougha Malmquist bias is present. Simulations show the power of the inversemethod. Nevertheless, we recommend reduction of the data using bothmethods. Each must give the same answer if each is freed from systematicerror. Although the maximum likelihood method will, in theory, eliminatemany of the bias problems of the direct method, nevertheless the biascorrections required by the direct method can be determined empiricallyvia Spaenhauer diagrams immediately from the data, as discussed in theearlier papers of this series. Any correlation of the absolute(trigonometric) magnitudes with the (trigonometric) distances is thebias. We discuss the level of accuracy that can be expected in acalibration of RR Lyrae absolute magnitudes from the FAME data over themetallicity range of [Fe/H] from 0 to -2, given the known frequency ofthe local RR Lyrae stars closer than 1.5 kpc. Of course, use will alsobe made of the entire FAME database for the RR Lyrae stars over thecomplete range of distances that can be used to empirically determinethe random and systematic errors from the FAME parallax catalog, usingcorrelations of derived absolute magnitude with distance and position inthe sky. These bias corrections are expected to be much more complicatedthan only a function of apparent magnitude because of variousrestrictions due to orbital constraints on the spacecraft.

Empirical relations for cluster RR Lyrae stars revisited
Our former study on the empirical relations between the Fourierparameters of the light curves of the fundamental mode RR Lyrae starsand their basic stellar parameters has been extended to considerablylarger data sets. The most significant contribution to the absolutemagnitude MV comes from the period P and from the firstFourier amplitude A1, but there are statistically significantcontributions also from additional higher order components, mostimportantly from A3 and in a lesser degree from the Fourierphase varphi51. When different colors are combined inreddening-free quantities, we obtain basically period-luminosity-colorrelations. Due to the log Teff(B-V,log g,[Fe/H]) relationfrom stellar atmosphere models, we would expect some dependence also onvarphi 31. Unfortunately, the data are still not extensiveand accurate enough to decipher clearly the small effect of this Fourierphase. However, with the aid of more accurate multicolor data on fieldvariables, we show that this Fourier phase should be present either inV-I or in B-V or in both. From the standard deviations of the variousregressions, an upper limit can be obtained on the overall inhomogeneityof the reddening in the individual clusters. This yields sigmaE(B-V)<~ 0.012 mag, which also implies an average minimumobservational error of sigmaV >~ 0.018 mag.

Absolute Magnitudes and Kinematic Parameters of the Subsystem of RR Lyrae Variables
The statistical parallax technique is applied to a sample of 262 RRabLyrae variables with published photoelectric photometry, metallicities,and radial velocities and with measured absolute proper motions.Hipparcos, PPM, NPM, and the Four-Million Star Catalog (Volchkov et al.1992) were used as the sources of proper motions; the proper motionsfrom the last three catalogs were reduced to the Hipparcos system. Wedetermine parameters of the velocity distribution for halo [(U_0, V_0,W_0) = (-9 +/- 12, -214 +/- 10, -16 +/- 7) km/s and (sigma_U, sigma_V,sigma_W) = (164 +/- 11, 105 +/- 7, 95 +/- 7) km/s] and thick-disk [(U_0,V_0, W_0) = (-16 +/- 8, -41 +/- 7, -18 +/- 5) km/s and (sigma_U,sigma_V, sigma_W) = (53 +/- 9, 42 +/- 8, 26 +/- 5) km/s] RR Lyrae, aswell as the intensity-averaged absolute magnitude for RR Lyrae of thesepopulations: = 0.77 +/- 0.10 and = +1.11 +/-0.28 for the halo and thick-disk objects, respectively. The metallicitydependence of the absolute magnitude of RR Lyrae is analyzed(=(0.76 +/- 0.12) + (0.26 +/- 0.26) x ([Fe/H] + 1.6) = 1.17 +0.26 x [Fe/H]). Our results are in satisfactory agreement with the_(RR)-[Fe/H] relation from Carney et al. (1992)(_(RR) = 1.01 + 0.15 x [Fe/H]) obtained by Baade-Wesselink'smethod. They provide evidence for a short distance scale: the LMCdistance modulus and the distance to the Galactic center are 18.22 +/-0.11 and 7.4 +/-±0.5 kpc, respectively. The zero point ofthe distance scale and the kinematic parameters of the RR Lyraepopulations are shown to be virtually independent of the source ofabsolute proper motions used and of whether they are reduced to theHipparcos system or not.

Stellar Variability in the Metal-rich, Obscured Globular Cluster Terzan 5
We present the results of a search for variability in and near the coreof the metal-rich, obscured globular cluster Terzan 5, using thenear-infrared camera and multiobject spectrometer (NICMOS) on board theHubble Space Telescope. This extreme cluster has approximately solarmetallicity and a central density that places it in the upper fewpercent of all clusters. It is estimated to have the highest interactionrate of any galactic globular cluster. The large extinction towardTerzan 5 and the severe stellar crowding near the cluster center presenta substantial observational challenge. Using time-series analysis, wediscovered two variable stars in this cluster. The first is an RRabLyrae variable with a period of ~0.61 days, a longer period than that offield stars with similar high metallicities. This period is shorter,however, than the average periods of RR Lyraes found in the metal-richglobular clusters NGC 6441, NGC 6388, and 47 Tuc. The second variable isa blue star with a 7 hr period sinusoidal variation and a likely orbitalperiod of 14 hr. This star is probably an eclipsing blue straggler or(less likely) the infrared counterpart to the low-mass X-ray binaryknown in Terzan 5. Because of the extreme crowding and overlapping Airyprofile of the IR point-spread function, we fall short of our originalgoal of detecting cataclysmic variables via Pa? emission anddetecting variable infrared emission from the location of the binarymillisecond pulsar in Terzan 5. Based on observations with the NASA/ESAHubble Space Telescope obtained at the Space Telescope ScienceInstitute, which is operated by Association of Universities for Researchin Astronomy, Incorporated, under NASA contract NAS 5-26555.

Stars with the Largest Hipparcos Photometric Amplitudes
A list of the 2027 stars that have the largest photometric amplitudes inHipparcos Photometry shows that most variable stars are all Miras. Thepercentage of variable types change as a function of amplitude. Thiscompilation should also be of value to photometrists looking forrelatively unstudied, but large amplitude stars.

Kinematics of Metal-poor Stars in the Galaxy. II. Proper Motions for a Large Nonkinematically Selected Sample
We present a revised catalog of 2106 Galactic stars, selected withoutkinematic bias and with available radial velocities, distance estimates,and metal abundances in the range -4.0<=[Fe/H]<=0.0. This updateof the 1995 Beers & Sommer-Larsen catalog includes newly derivedhomogeneous photometric distance estimates, revised radial velocitiesfor a number of stars with recently obtained high-resolution spectra,and refined metallicities for stars originally identified in the HKobjective-prism survey (which account for nearly half of the catalog)based on a recent recalibration. A subset of 1258 stars in this cataloghave available proper motions based on measurements obtained with theHipparcos astrometry satellite or taken from the updated AstrographicCatalogue (second epoch positions from either the Hubble Space TelescopeGuide Star Catalog or the Tycho Catalogue), the Yale/San Juan SouthernProper Motion Catalog 2.0, and the Lick Northern Proper Motion Catalog.Our present catalog includes 388 RR Lyrae variables (182 of which arenewly added), 38 variables of other types, and 1680 nonvariables, withdistances in the range 0.1 to 40 kpc.

Systematics of RR Lyrae Statistical Parallax. II. Proper Motions and Radial Velocities
We investigate whether a misestimate of proper motions or radialvelocities could have been a source of substantial systematic errors inthe statistical parallax determination of the absolute magnitude of RRLyrae stars. In an earlier paper, we showed that the statisticalparallax method is extremely robust and rather insensitive to varioussystematic effects. The main potential problem with this method wouldtherefore arise from systematically bad observational inputs, propermotions, radial velocities, apparent magnitudes, and/or extinctions.Here we focus on the proper motions and radial velocities. We comparethree different catalogs of proper motions: Lick, Hipparcos, and the onecompiled by Wan et al. (WMJ). We find that the WMJ catalog is tooheterogeneous to be a reliable source. We analyze a sample of 165 haloRR Lyrae stars with either Lick or Hipparcos proper motions. For thestars with both Lick and Hipparcos proper motions, we use the weightedmeans of reported values. Various possible biases are investigatedthrough vigorous Monte Carlo simulations, and we evaluate the smallcorrections due to Malmquist bias, anisotropic positions of the stars onthe sky, and non-Gaussian distribution of stellar velocities. The meanRR Lyrae absolute magnitude is M_V = 0.74 +/- 0.12 at the meanmetallicity of the sample, <[Fe/H]> = -1.60, only 0.01 magbrighter than the value obtained in the previous study, which did notincorporate Hipparcos proper motions. To test for systematics in the RRLyrae radial velocities, we analyze a non-kinematically selected sample([Fe/H] <= -1.5) of 103 RR Lyrae stars with Hipparcos and/or Lickproper motions and 724 non-RR Lyrae stars from Beers &Sommer-Larsen. We find M_V = 0.79 +/- 0.12 at <[Fe/H]> = -1.79.Because the radial velocities in this sample are dominated by non-RRLyrae stars, the agreement of the two determinations suggests that thepure RR Lyrae sample is not significantly affected by systematics inradial velocities. If the two determination are combined (taking intoaccount the 0.45 correlation coefficient between them), the net resultis M_V = 0.77 +/- 0.10 at <[Fe/H]> = -1.71. The faint absolutemagnitudes of RR Lyrae stars confirmed by this analysis gives strongsupport to the short distance scale.

The absolute magnitudes of RR Lyraes from HIPPARCOS parallaxes and proper motions
We have used HIPPARCOS proper motions and the method of StatisticalParallax to estimate the absolute magnitude of RR Lyrae stars. Inaddition we used the HIPPARCOS parallax of RR Lyrae itself to determineit's absolute magnitude. These two results are in excellent agreementwith each other and give a zero-point for the RR Lyrae M_v,[Fe/H]relation of 0.77+/-0.15 at [Fe/H]=-1.53. This zero-point is in goodagreement with that obtained recently by several groups usingBaade-Wesselink methods which, averaged over the results from thedifferent groups, gives M_v = 0.73+/-0.14 at [Fe/H]=-1.53. Taking theHIPPARCOS based zero-point and a value of 0.18+/-0.03 for the slope ofthe M_v,[Fe/H] relation from the literature we find firstly, thedistance modulus of the LMC is 18.26+/-0.15 and secondly, the mean ageof the Globular Clusters is 17.4+/-3.0 GYrs. These values are comparedwith recent estimates based on other "standard candles" that have alsobeen calibrated with HIPPARCOS data. It is clear that, in addition toastrophysical problems, there are also problems in the application ofHIPPARCOS data that are not yet fully understood. Table 1, whichcontains the basic data for the RR Lyraes, is available only at CDS. Itmay be retrieved via anonymous FTP at cdsarc.u-strasbg.fr (130.79.128.5)or via the Web at http://cdsweb.u-strasbg.fr/Abstract.html

The slope of the RR Lyrae Mv-(Fe/H) relation
We review the available observational data to show that the slope of theRR Lyrae Mv-(Fe/H) relation is 0.18 +/- 0.03. The recent claim by Feastthat, because of biases, the true slope is much steeper is notjustified.

Early evolution of the Galactic halo revealed from Hipparcos observations of metal-poor stars
The kinematics of 122 red giant and 124 RR Lyrae stars in the solarneighborhood are studied using accurate measurements of their propermotions obtained by the Hipparcos astrometry satellite, combined withtheir published photometric distances, metal abundances, and radialvelocities. A majority of these sample stars have metal abundances of(Fe/H) = -1 or less and thus represent the old stellar populations inthe Galaxy. The halo component, with (Fe/H) = -1.6 or less, ischaracterized by a lack of systemic rotation and a radially elongatedvelocity ellipsoid. About 16 percent of such metal-poor stars have loworbital eccentricities, and we see no evidence of a correlation between(Fe/H) and e. Based on the model for the e-distribution of orbits, weshow that this fraction of low-e stars for (Fe/H) = -1.6 or less isexplained by the halo component alone, without introducing the extradisk component claimed by recent workers. This is also supported by theabsence of a significant change in the e-distribution with height fromthe Galactic plane. In the intermediate-metallicity range, we find thatstars with disklike kinematics have only modest effects on thedistributions of rotational velocities and e for the sample at absolutevalue of z less than 1 kpc. This disk component appears to constituteonly 10 percent for (Fe/H) between -1.6 and -1 and 20 percent for (Fe/H)between -1.4 and -1.

The Absolute Magnitudes of the RR Lyrae Stars
We present a new calibration of the relationship between the absolutemagnitudes and metal abundances, [Fe/H], of RR Lyrae stars. Temperaturesinferred from optical and near infrared color indices and the new Kuruczmodels are utilized in conjunction with Baade-Wesselink solutions toderive absolute magnitudes. Temperature inferred from the optical andnear infrared photometry are $\sim$ 200K - 300K higher for the variablesthan those given from ($V-K$) color indices and the older Kurucz models.We find $M_v$ = 0.287 [Fe/H] + 0.964. This equation gives higherluminosities ($\sim$ 0.2 mag) for the metal-poor variables than previousB-W calibrations. The RR Lyrae stars in the Large Magellanic Cloud inconjunction with our calibration yield a distance modulus of 18.53.Thus, the Cepheids and RR Lyrae stars give identical distance moduli at$\leq$ 0.1 mag level. The repercussions of the higher temperatures andhigher luminosities of RR Lyrae stars on the distances and ages ofGlobular clusters, distance to the galactic center, the Hubble constantand age of the universe, and the masses of RR Lyrae stars are discussed.(SECTION: Stars)

Computation of the distance moduli of RR Lyrae stars from their light and colour curves.
We use B and V data of globular cluster variables to derive a formulafor the distance moduli of RRab stars. The method employs the Fourierdecomposition of the V light curve and the average B-V colour index. Byusing our former result for the V_0_ absolute magnitude, we also obtainan expression for the dereddened colour index. With the aid of the newformulae, the relative distance moduli can be estimated within an errorof <0.03mag. Although we also make an absolute calibration, it iscautioned that this may be more affected by possible systematic errorsoriginating mostly from the Baade-Wesselink magnitudes. On the basis ofthe scatter of the individual distance moduli computed with and withoutreddening correction, it is shown that inhomogeneous reddening plays arole in several clusters. By using our formulae we derive newexpressions for the I_c_ and K absolute magnitudes on a sample of starswhich contains mostly field stars with accurate photometry. As aby-product of this derivation we also give optimum estimations for theselective absorption coefficient R_V_. We show that the K absolutemagnitude contains important contribution also from the Fourierparameters, besides the well known dependence on the period. The I_c_absolute magnitude is superbly correlated with the Fourier parameters,which implies that this colour is a very good candidate for the accurateestimation of the absolute magnitude.

The Absolute Magnitude and Kinematics of RR Lyrae Stars Via Statistical Parallax
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996AJ....112.2110L&db_key=AST

Template K Light Curves for RR Lyrae Stars
We discuss a technique to compute using templates developed by fitting aFourier series to existing high-quality K light curves of field RRLyraes. We find that a series of order 2 is sufficient to model thelight curves of first-overtone RRc variables, but 4 different 6th-ordertemplates are needed for the fundamental RRab stars due to changes inthe light curves that appear to correlate with the B amplitude. Applyingthe appropriate template to single-phase observations yield estimatedvalues whose deviation from the true is randomly distributed over phase,and is of the same order of magnitude as the observational uncertainty,as long as the ephemeris phase is accurate. The addition of a secondpoint, separated by at least 0.2 in phase from the first, allows the useof template-shifting to remove deviations that may arise fromuncertainties in the ephemeris phase, and template and scaling factorselection, with final systematic errors reduced to less than 0.03 mag.We find that the use of templates yield superior results to thosederived using other techniques, which can produce values that showsystematic deviations over phase. (SECTION: Stars)

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Tucana
Right ascension:00h58m09.69s
Declination:-63°23'44.3"
Apparent magnitude:11.61
Proper motion RA:4.8
Proper motion Dec:-17.5
B-T magnitude:11.861
V-T magnitude:11.631

Catalogs and designations:
Proper Names
TYCHO-2 2000TYC 8845-285-1
USNO-A2.0USNO-A2 0225-00251891
HIPHIP 4541

→ Request more catalogs and designations from VizieR