Home     Getting Started     New Pictures     Picture of the Day     Blog New!     Login  

TYC 979-339-1


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Velocity curve analysis of the spectroscopic binary stars V2082 Cyg, V918 Her, BW Dra, V2357 Oph, YZ Cas and V380 Cygni by the Artificial Neural Networks
We use an Artificial Neural Network (ANN) to derive the orbitalparameters of spectroscopic binary stars. Using measured radial velocitydata of six double-lined spectroscopic binary systems V2082 Cyg, V918Her, BW Dra, V2357 Oph, YZ Cas and V380 Cygni, we find correspondingorbital and spectroscopic elements. Our numerical results are in goodagreement with those obtained by others using more traditional methods.

Angular momentum and mass evolution of contact binaries
Various scenarios of contact binary evolution have been proposed in thepast, giving hints of (sometimes contradictory) evolutionary sequencesconnecting A- and W-type systems. As the components of close detachedbinaries approach each other and contact binaries are formed, followingevolutionary paths transforms them into systems of two categories:A-type and W-type. The systems evolve in a similar way but underslightly different circumstances. The mass/energy transfer rate isdifferent, leading to quite different evolutionary results. Analternative scenario of evolution in contact is presented and discussed,based on the observational data of over one hundred low-temperaturecontact binaries. It results from the observed correlations amongcontact binary physical and orbital parameters. Theoretical tracks arecomputed assuming angular momentum loss from a system via stellar wind,accompanied by mass transfer from an advanced evolutionary secondary tothe main-sequence primary. A good agreement is seen between the tracksand the observed graphs. Independently of details of the evolution incontact and a relation between A- and W-type systems, the ultimate fateof contact binaries involves the coalescence of both components into asingle fast rotating star.

The evolutionary status of W Ursae Majoris-type systems
Well-determined physical parameters of 130 W Ursae Majoris (W UMa)systems were collected from the literature. Based on these data, theevolutionary status and dynamical evolution of W UMa systems areinvestigated. It is found that there is no evolutionary differencebetween W- and A-type systems in the M-J diagram, which is consistentwith the results derived from the analysis of observed spectral type andof M-R and M-L diagrams of W UMa systems. M-R and M-L diagrams of W- andA-type systems indicate that a large amount of energy should betransferred from the more massive to the less massive component, so thatthey are not in thermal equilibrium and undergo thermal relaxationoscillation. Moreover, the distribution of angular momentum, togetherwith the distribution of the mass ratio, suggests that the mass ratio ofthe observed W UMa systems decreases with decreasing total mass. Thiscould be the result of the dynamical evolution of W UMa systems, whichsuffer angular momentum loss and mass loss as a result of the magneticstellar wind. Consequently, the tidal instability forces these systemstowards lower q values and finally to rapidly rotating single stars.

Formation and Evolution of W Ursae Majoris Contact Binaries
The origin and evolution of W UMa systems are discussed based on All SkyAutomated Survey (ASAS) data and the mean kinematic ages of foursubgroups of 97 field contact binaries (FCBs). The period distributionof eclipsing binaries discovered by ASAS suggests that a period limit totidal locking for the close binaries is about 2.24 days, so that most WUMa systems might be formed from detached binaries with periodsP<~2.24 days, and a maximum advanced time from a detached system to aW UMa is about 3.23 Gyr. Moreover, the secular evolution of the angularmomentum (AM), the system mass, and the orbital period of 97 FCBs wereinvestigated according to the mean kinematic ages, which were setaccording to AM bins. AMs, systemic masses, and orbital periods wereshown to be decreasing with kinematic age. Their first-order decreasingrates have been determined as J˙/J=1.86×10-10yr-1, M˙/M=0.95×10-10 yr-1,and P˙/P=1.24×10-10 yr-1, and theaverage amplification (A¯=dlnJ/dlnM) is derived to be 1.96. Theseare lower than those derived from detached chromospherically activebinaries (CABs). This suggests that the magnetic activity level of FCBsis indeed weaker than that of CABs. Meanwhile, the decreasing rate of AMof FCBs is found to be equal to an average value in a cycle of a cyclicmodel of contact binaries. This might suggest that the evolution of FCBsundergoes thermal relaxation oscillation (TRO) and that the coalescenceof W UMa systems is a very long process, which is also indicated by thedynamical evolution of FCBs.

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

Contact Binaries with Additional Components. II. A Spectroscopic Search for Faint Tertiaries
It is unclear how very close binary stars form, given that during thepre-main-sequence phase the component stars would have been inside eachother. One hypothesis is that they formed farther apart but were broughtin closer after formation by gravitational interaction with a thirdmember of the system. If so, all close binaries should be members oftriple (or higher order) systems. As a test of this prediction, wepresent a search for the signature of third components in archivalspectra of close binaries. In our sample of 75 objects, 23 show evidencefor the presence of a third component, down to a detection limit oftertiary flux contributions of about 0.8% at 5200 Å (consideringonly contact and semidetached binaries, we find 20 out of 66). In ahomogeneous subset of 59 contact binaries, we are fairly confident thatthe 15 tertiaries we have detected are all tertiaries present with massratios 0.28<~M3/M12<~0.75 and implied outerperiods P<~106 days. We find that if the frequency oftertiaries were the same as that of binary companions to solar-typestars, one would expect to detect about 12 tertiaries. In contrast, ifall contact binaries were in triple systems, one would expect about 20.Thus, our results are not conclusive but are sufficiently suggestive towarrant further studies.

Physical Parameters of Components in Close Binary Systems: VI
New high-quality CCD photometric light curves for the W UMa-type systemsV410 Aur, CK Boo, FP Boo, V921 Her, ET Leo, XZ Leo, V839 Oph, V2357 Oph,AQ Psc and VY Sex are presented. The new multicolor light curves,combined with the spectroscopic data recently obtained at David DunlapObservatory, are analyzed with the Wilson-Devinney code to yield thephysical parameters (masses, radii and luminosities) of the components. Our models for all ten systems resulted in a contact configuration. Fourbinaries (V921 Her, XZ Leo, V2357 Oph and VY Sex) have low, while two(V410 Aur and CK Boo) have high fill-out factors. FP Boo, ET Leo, V839Oph and AQ Psc have medium values of the fill-out factor. Three of thesystems (FP Boo, V921 Her and XZ Leo) have very bright primaries as aresult of their high temperatures and large radii.

A catalogue of eclipsing variables
A new catalogue of 6330 eclipsing variable stars is presented. Thecatalogue was developed from the General Catalogue of Variable Stars(GCVS) and its textual remarks by including recently publishedinformation about classification of 843 systems and making correspondingcorrections of GCVS data. The catalogue1 represents thelargest list of eclipsing binaries classified from observations.

Times of Minima for Neglected Eclipsing Binaries in 2005
Times of minima obtained at Rolling Hills Observatory during 2005 for anumber of neglected eclipsing binaries are presented.

A Catalog of Northern Stars with Annual Proper Motions Larger than 0.15" (LSPM-NORTH Catalog)
The LSPM catalog is a comprehensive list of 61,977 stars north of theJ2000 celestial equator that have proper motions larger than 0.15"yr-1 (local-background-stars frame). The catalog has beengenerated primarily as a result of our systematic search for high propermotion stars in the Digitized Sky Surveys using our SUPERBLINK software.At brighter magnitudes, the catalog incorporates stars and data from theTycho-2 Catalogue and also, to a lesser extent, from the All-SkyCompiled Catalogue of 2.5 million stars. The LSPM catalog considerablyexpands over the old Luyten (Luyten Half-Second [LHS] and New LuytenTwo-Tenths [NLTT]) catalogs, superseding them for northern declinations.Positions are given with an accuracy of <~100 mas at the 2000.0epoch, and absolute proper motions are given with an accuracy of ~8 masyr-1. Corrections to the local-background-stars propermotions have been calculated, and absolute proper motions in theextragalactic frame are given. Whenever available, we also give opticalBT and VT magnitudes (from Tycho-2, ASCC-2.5),photographic BJ, RF, and IN magnitudes(from USNO-B1 catalog), and infrared J, H, and Ks magnitudes(from 2MASS). We also provide an estimated V magnitude and V-J color fornearly all catalog entries, useful for initial classification of thestars. The catalog is estimated to be over 99% complete at high Galacticlatitudes (|b|>15deg) and over 90% complete at lowGalactic latitudes (|b|>15deg), down to a magnitudeV=19.0, and has a limiting magnitude V=21.0. All the northern starslisted in the LHS and NLTT catalogs have been reidentified, and theirpositions, proper motions, and magnitudes reevaluated. The catalog alsolists a large number of completely new objects, which promise to expandvery significantly the census of red dwarfs, subdwarfs, and white dwarfsin the vicinity of the Sun.Based on data mining of the Digitized Sky Surveys (DSSs), developed andoperated by the Catalogs and Surveys Branch of the Space TelescopeScience Institute (STScI), Baltimore.Developed with support from the National Science Foundation (NSF), aspart of the NASA/NSF NStars program.

Kinematics of W Ursae Majoris type binaries and evidence of the two types of formation
We study the kinematics of 129 W UMa binaries and we discuss itsimplications on the contact binary evolution. The sample is found to beheterogeneous in the velocity space. That is, kinematically younger andolder contact binaries exist in the sample. A kinematically young (0.5Gyr) subsample (moving group) is formed by selecting the systems thatsatisfy the kinematical criteria of moving groups. After removing thepossible moving group members and the systems that are known to bemembers of open clusters, the rest of the sample is called the fieldcontact binary (FCB) group. The FCB group is further divided into fourgroups according to the orbital period ranges. Then, a correlation isfound in the sense that shorter-period less-massive systems have largervelocity dispersions than the longer-period more-massive systems.Dispersions in the velocity space indicate a 5.47-Gyr kinematical agefor the FCB group. Compared with the field chromospherically activebinaries (CABs), presumably detached binary progenitors of the contactsystems, the FCB group appears to be 1.61 Gyr older. Assuming anequilibrium in the formation and destruction of CAB and W UMa systems inthe Galaxy, this age difference is treated as an empirically deducedlifetime of the contact stage. Because the kinematical ages (3.21, 3.51,7.14 and 8.89 Gyr) of the four subgroups of the FCB group are muchlonger than the 1.61-Gyr lifetime of the contact stage, the pre-contactstages of the FCB group must dominantly be producing the largedispersions. The kinematically young (0.5 Gyr) moving group covers thesame total mass, period and spectral ranges as the FCB group. However,the very young age of this group does not leave enough room forpre-contact stages, and thus it is most likely that these systems wereformed in the beginning of the main sequence or during thepre-main-sequence contraction phase, either by a fission process or mostprobably by fast spiralling in of two components in a common envelope.

CCD Minima for Selected Eclipsing Binaries in 2004
Not Available

Photoelectric Minima of Some Eclipsing Binary Stars
Not Available

SB9: The ninth catalogue of spectroscopic binary orbits
The Ninth Catalogue of Spectroscopic Binary Orbits(http://sb9.astro.ulb.ac.be) continues the series of compilations ofspectroscopic orbits carried out over the past 35 years by Batten andcollaborators. As of 2004 May 1st, the new Catalogue holds orbits for2386 systems. Some essential differences between this catalogue and itspredecessors are outlined and three straightforward applications arepresented: (1) completeness assessment: period distribution of SB1s andSB2s; (2) shortest periods across the H-R diagram; (3)period-eccentricity relation.

Up-to-Date Linear Elements of Eclipsing Binaries
About 1800 O-C diagrams of eclipsing binaries were analyzed and up-todate linear elements were computed. The regularly updated ephemerides(as a continuation of SAC) are available only in electronic form at theInternet address: http://www.as.ap.krakow.pl/ephem/.

Key parameters of W UMa-type contact binaries discovered by HIPPARCOS
A sample of W UMa-type binaries which were discovered by the HIPPARCOSsatellite was constructed with the aid of well defined selectioncriteria described in this work. The selection process showed up thatseveral systems of which the variability types have been assigned as EBin HIPPARCOS catalogue are genuine contact binaries of W UMa-type. Thelight curves of the 64 selected systems based on HIPPARCOS photometrywere analyzed with the aid of light curve synthesis method by Rucinskiand their geometric elements (namely mass ratio q, degree of contact f,and orbital inclination i) were determined. The solutions were obtainedfor the first time for many of the systems in the sample and would be agood source for their future light curve analyses based on more precisefollow-up observations.Based on observations made with the ESA HIPPARCOSastrometry satellite.

Photoelectric Minima of Selected Eclipsing Binaries
Not Available

Radial Velocity Studies of Close Binary Stars. VIII.
Radial velocity measurements and sine-curve fits to the orbital velocityvariations are presented for the seventh set of 10 close binary systems:V410 Aur, V523 Cas, QW Gem, V921 Her, V2357 Oph, V1130 Tau, HN UMa, HXUMa, HD 93917, and NSV 223. All systems but three (V523 Cas, HD 93917,NSV 223) were discovered photometrically by the Hipparcos mission. Allsystems are double-lined (SB2) binaries, and all but the detached, veryclose system V1130 Tau are contact binaries. The broadening functionpermitted improvement of the orbital elements for V523 Cas, which wasthe only system observed before for radial velocity variations.Spectroscopic/visual companions were detected for V410 Aur and HX UMa.Several of the studied systems are prime candidates for combined lightand radial velocity synthesis solutions.Based on data obtained at the David Dunlap Observatory, University ofToronto.

Catalogue of the field contact binary stars
A catalogue of 361 galactic contact binaries is presented. Listedcontact binaries are divided into five groups according to the type andquality of the available observations and parameters. For all systemsthe ephemeris for the primary minimum, minimum and maximum visualbrightness and equatorial coordinates are given. If available,photometric elements, (m1+m2)sin3i,spectral type, parallax and magnitude of the O'Connell effect are alsogiven. Photometric data for several systems are augmented by newobservations. The quality of the available data is assessed and systemsrequiring modern light-curve solutions are selected. Selectedstatistical properties of the collected data are discussed.

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

The 74th Special Name-list of Variable Stars
We present the Name-list introducing GCVS names for 3153 variable starsdiscovered by the Hipparcos mission.

True and Possible Contact Binaries in the Hipparcos Catalogue
A comprehensive list of contact binaries included in the HIPPARCOScatalogue is given.

Subdwarf studies. I - UBVRI photometry of NLTT stars
UBVRI photometry is presented for a sample of 1656 southern stars,including 1211 that were previously unmeasured, drown from the NLTTproper-motion catalog. The catalog is shown to be a rich source ofsubdwarfs. The normalized ultraviolet excess delta (U - B)0.6,photometric parallax, and interstellar reddening are calculated for eachstar when possible. Photometric parallaxes are compared withtrigonometric parallaxes from the literature. It is found that theformer do not have systematic errors greater than about 25 percent. Inagreement with other studies, the bluest subdwarfs are found at B - V =0.35. The selection of the program stars on the basis of large reducedproper motions restricted subgiant contamination of the sample to about5 percent and increased the discovery fraction of halo stars relative todisk stars. The claim is made here that the sample can be used toinvestigate the abundance distribution of the halo. The sample includesstars with ultraviolet excesses characteristic of disk abundances butwith velocities up to 150 km/s. These are believed to be stars that,quite expectedly, reside in the high-velocity tail of the disk velocitydistribution.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Ophiucus
Right ascension:16h57m16.76s
Declination:+10°59'51.4"
Apparent magnitude:10.492
Proper motion RA:1.9
Proper motion Dec:-101.4
B-T magnitude:11.606
V-T magnitude:10.584

Catalogs and designations:
Proper Names
TYCHO-2 2000TYC 979-339-1
USNO-A2.0USNO-A2 0975-08693601
HIPHIP 82967

→ Request more catalogs and designations from VizieR