Home     Getting Started     New Pictures     Picture of the Day     Blog New!     Login  

HD 90771


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

AKARI's infrared view on nearby stars. Using AKARI infrared camera all-sky survey, 2MASS, and Hipparcos catalogs
Context. The AKARI, a Japanese infrared space mission, has performed anAll-Sky Survey in six infrared-bands from 9 to 180 ?m with higherspatial resolutions and better sensitivities than IRAS. Aims: Weinvestigate the mid-infrared (9 and 18 ?m) point source catalog (PSC)obtained with the infrared camera (IRC) onboard AKARI, in order tounderstand the infrared nature of the known objects and to identifypreviously unknown objects. Methods: Color-color diagramsand a color-magnitude diagram were plotted with the AKARI-IRC PSCand other available all-sky survey catalogs. We combined the Hipparcosastrometric catalog and the 2MASS all-sky survey catalog with theAKARI-IRC PSC. We furthermore searched literature and SIMBADastronomical database for object types, spectral types, and luminosityclasses. We identified the locations of representative stars and objectson the color-magnitude and color-color diagram schemes. Theproperties of unclassified sources can be inferred from their locationson these diagrams. Results: We found that the (B-V) vs.(V-S9W) color-color diagram is useful for identifying thestars with infrared excess emerged from circumstellar envelopes ordisks. Be stars with infrared excess are separated well from other typesof stars in this diagram. Whereas (J-L18W) vs. (S9W-L18W)diagram is a powerful tool for classifying several object types.Carbon-rich asymptotic giant branch (AGB) stars and OH/IR stars formdistinct sequences in this color-color diagram. Young stellarobjects (YSOs), pre-main sequence (PMS) stars, post-AGB stars, andplanetary nebulae (PNe) have the largest mid-infrared color excess andcan be identified in the infrared catalog. Finally, we plot the L18W vs.(S9W-L18W) color-magnitude diagram, using the AKARI data togetherwith Hipparcos parallaxes. This diagram can be used to identify low-massYSOs and AGB stars. We found that this diagram is comparable to the [24]vs. ([8.0]-[24]) diagram of Large Magellanic Cloud sources usingthe Spitzer Space Telescope data. Our understanding of Galactic objectswill be used to interpret color-magnitude diagram of stellar populationsin the nearby galaxies that Spitzer Space Telescope observed. Conclusions: Our study of the AKARI color-color andcolor-magnitude diagrams will be used to explore properties ofunknown objects in the future. In addition, our analysis highlights afuture key project to understand stellar evolution with a circumstellarenvelope, once the forthcoming astronometrical data with GAIA areavailable.Catalog (full Tables 3 and 4) are only available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/514/A2

Hipparcos red stars in the HpV_T2 and V I_C systems
For Hipparcos M, S, and C spectral type stars, we provide calibratedinstantaneous (epoch) Cousins V - I color indices using newly derivedHpV_T2 photometry. Three new sets of ground-based Cousins V I data havebeen obtained for more than 170 carbon and red M giants. These datasetsin combination with the published sources of V I photometry served toobtain the calibration curves linking Hipparcos/Tycho Hp-V_T2 with theCousins V - I index. In total, 321 carbon stars and 4464 M- and S-typestars have new V - I indices. The standard error of the mean V - I isabout 0.1 mag or better down to Hp~9 although it deteriorates rapidly atfainter magnitudes. These V - I indices can be used to verify thepublished Hipparcos V - I color indices. Thus, we have identified ahandful of new cases where, instead of the real target, a random fieldstar has been observed. A considerable fraction of the DMSA/C and DMSA/Vsolutions for red stars appear not to be warranted. Most likely suchspurious solutions may originate from usage of a heavily biased color inthe astrometric processing.Based on observations from the Hipparcos astrometric satellite operatedby the European Space Agency (ESA 1997).}\fnmsep\thanks{Table 7 is onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/397/997

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Vela
Right ascension:10h27m39.47s
Declination:-51°35'26.6"
Apparent magnitude:8.475
Distance:409.836 parsecs
Proper motion RA:-26.6
Proper motion Dec:1.8
B-T magnitude:10.541
V-T magnitude:8.646

Catalogs and designations:
Proper Names
HD 1989HD 90771
TYCHO-2 2000TYC 8196-2942-1
USNO-A2.0USNO-A2 0375-11270626
HIPHIP 51214

→ Request more catalogs and designations from VizieR