Home     Getting Started     New Pictures     Picture of the Day     Blog New!     Login  

TYC 7708-2224-1


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Bayesian inference of stellar parameters and interstellar extinction using parallaxes and multiband photometry
Astrometric surveys provide the opportunity to measure the absolutemagnitudes of large numbers of stars, but only if the individualline-of-sight extinctions are known. Unfortunately, extinction is highlydegenerate with stellar effective temperature when estimated frombroad-band optical/infrared photometry. To address this problem, Iintroduce a Bayesian method for estimating the intrinsic parameters of astar and its line-of-sight extinction. It uses both photometry andparallaxes in a self-consistent manner in order to provide anon-parametric posterior probability distribution over the parameters.The method makes explicit use of domain knowledge by employing theHertzsprung-Russell Diagram (HRD) to constrain solutions and to ensurethat they respect stellar physics. I first demonstrate this method byusing it to estimate effective temperature and extinction from BVJHKdata for a set of artificially reddened Hipparcos stars, for whichaccurate effective temperatures have been estimated from high-resolutionspectroscopy. Using just the four colours, we see the expected strongdegeneracy (positive correlation) between the temperature andextinction. Introducing the parallax, apparent magnitude and the HRDreduces this degeneracy and improves both the precision (reduces theerror bars) and the accuracy of the parameter estimates, the latter byabout 35 per cent. The resulting accuracy is about 200 K in temperatureand 0.2 mag in extinction. I then apply the method to estimate theseparameters and absolute magnitudes for some 47 000 F, G, K Hipparcosstars which have been cross-matched with Two-Micron All-Sky Survey(2MASS). The method can easily be extended to incorporate the estimationof other parameters, in particular metallicity and surface gravity,making it particularly suitable for the analysis of the 109stars from Gaia.

Cool Subdwarf Investigations. II. Multiplicity
Cool subdwarfs of types K and M are the fainter counterparts of coolmain-sequence dwarfs that dominate the Galactic population. In thispaper, we present the results of an optical speckle survey of 62confirmed cool subdwarf systems within 60 pc. We have resolved twonew companions and confirmed two previously known companions withseparations 0farcs13-3farcs29. After including previously known widecompanions and all known spectroscopic binaries, we determine themultiplicity rate of cool subdwarfs to be 26% ± 6%, which issomewhat lower than comparable main-sequence stars that have amultiplicity rate of 37% ± 5%. We find that only 3% of the coolsubdwarfs surveyed have companions within 10 AU, 3% have companionsbetween 10 and 100 AU, and 14% have companions beyond 100 AU.The other 6% of cool subdwarfs are spectroscopic binaries. This is verydifferent from K/M dwarfs that have most companions (13%) at separationscloser than 10 AU. However, because a search for close binariesamong a large sample of nearby cool subdwarfs remains elusive, it is notyet settled whether or not the multiplicity rates are significantlydifferent. Nonetheless, several different observational results andtheories pointing to a possible dearth of subdwarf multiples arediscussed.

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

Calán-ESO Proper-Motion Catalog
The Calán-ESO Proper-Motion Catalog (CE Catalog) contains 542stars with proper motions >=0.2" yr-1, identified in 14ESO areas in the southern hemisphere. Proper motions were measured fromred IIIa-F plates taken 6-16 yr apart. Comparing the CE catalog with theLuyten and the Luyten half-second catalogs, we find that both sufferfrom incompleteness, which is particularly serious (<~40% complete)for mR>~13, where many of the astrophysically interestingobject can be found. Proper motions, coordinates, estimated magnitudes,and finding charts for all objects in the catalog are provided. Based onplates obtained with the Schmidt Camera operated by ESO at La Silla,Chile. Project 64.H-0318.

Subdwarf studies. II - Abundances and kinematics from medium resolution spectra. III - The halo metallicity distribution
Stars previously identified as having UV excesses are observed at 1-Aresolution in the Ca II K-line region. Comparisons of these data withother samples and with Monte Carlo simulations involving a singlecomponent halo have yielded estimates of halo velocity dispersions androtation velocity, corrected for the kinematic biases in the sample. Itis suggested that the data are not consistent with a model in which thehalo formed from star formation in a dissipating, collapsing cloud; theyare, however, reconcilable with the formation of the halo stars bynumerous, independently evolving gas clouds. The metallicitydistribution of a sample of 372 kinematically selected halo stars isthen constructed, with a view to selection effects in the data. Goodagreement is noted between the globular cluster metallicity distributionand a stochastic model with a mean of 10 enrichments/fragment.

Subdwarf studies. I - UBVRI photometry of NLTT stars
UBVRI photometry is presented for a sample of 1656 southern stars,including 1211 that were previously unmeasured, drown from the NLTTproper-motion catalog. The catalog is shown to be a rich source ofsubdwarfs. The normalized ultraviolet excess delta (U - B)0.6,photometric parallax, and interstellar reddening are calculated for eachstar when possible. Photometric parallaxes are compared withtrigonometric parallaxes from the literature. It is found that theformer do not have systematic errors greater than about 25 percent. Inagreement with other studies, the bluest subdwarfs are found at B - V =0.35. The selection of the program stars on the basis of large reducedproper motions restricted subgiant contamination of the sample to about5 percent and increased the discovery fraction of halo stars relative todisk stars. The claim is made here that the sample can be used toinvestigate the abundance distribution of the halo. The sample includesstars with ultraviolet excesses characteristic of disk abundances butwith velocities up to 150 km/s. These are believed to be stars that,quite expectedly, reside in the high-velocity tail of the disk velocitydistribution.

G. P. Kuiper's spectral classifications of proper-motion stars
Spectral classifications are listed for over 3200 stars, mainly of largeproper motion, observed and classified by Kuiper during the years1937-1944 at the Yerkes and McDonald Observatories. While Kuiper himselfpublished many of his types, and while improved classifications are nowavailable for many of these stars, much of value remains. For many ofthe objects, no other spectral data exist.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Antlia
Right ascension:10h13m01.62s
Declination:-39°06'07.8"
Apparent magnitude:11.193
Distance:49.456 parsecs
Proper motion RA:-326.3
Proper motion Dec:-255.5
B-T magnitude:11.901
V-T magnitude:11.252

Catalogs and designations:
Proper Names
TYCHO-2 2000TYC 7708-2224-1
USNO-A2.0USNO-A2 0450-10946345
HIPHIP 50045

→ Request more catalogs and designations from VizieR