Home     Getting Started     New Pictures     Picture of the Day     Blog New!     Login  

TYC 7376-369-1


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

The RAdial Velocity Experiment (RAVE): Third Data Release
We present the third data release of the RAdial Velocity Experiment(RAVE) which is the first milestone of the RAVE project, releasing thefull pilot survey. The catalog contains 83,072 radial velocitymeasurements for 77,461 stars in the southern celestial hemisphere, aswell as stellar parameters for 39,833 stars. This paper describes thecontent of the new release, the new processing pipeline, as well as anupdated calibration for the metallicity based upon the observation ofadditional standard stars. Spectra will be made available in a futurerelease. The data release can be accessed via the RAVE Web site.

A catalogue of young runaway Hipparcos stars within 3 kpc from the Sun
Traditionally, runaway stars are O- and B-type stars with large peculiarvelocities. We would like to extend this definition to young stars (upto ?50 Myr) of any spectral type and to identify those present in theHipparcos catalogue by applying different selection criteria, such aspeculiar space velocities or peculiar one-dimensional velocities.Runaway stars are important for studying the evolution of multiple starsystems or star clusters, as well as for identifying the origins ofneutron stars. We compile the distances, proper motions, spectral types,luminosity classes, V magnitudes and B-V colours, and we utilizeevolutionary models from different authors to obtain star ages. We studya sample of 7663 young Hipparcos stars within 3 kpc from the Sun. Theradial velocities are obtained from the literature. We investigate thedistributions of the peculiar spatial velocity and the peculiar radialvelocity as well as the peculiar tangential velocity and itsone-dimensional components and we obtain runaway star probabilities foreach star in the sample. In addition, we look for stars that aresituated outside any OB association or OB cluster and the Galactic planeas well as stars for which the velocity vector points away from themedian velocity vector of neighbouring stars or the surrounding local OBassociation/cluster (although the absolute velocity might be small). Wefind a total of 2547 runaway star candidates (with a contamination ofnormal Population I stars of 20 per cent at most). Thus, aftersubtracting these 20 per cent, the runaway frequency among young starsis about 27 per cent. We compile a catalogue of runaway stars, which isavailable via VizieR.

The GEOS RR Lyr Survey
Not Available

Multiperiodic Galactic field RR Lyrae stars in the ASAS catalogue
The All Sky Automated Survey (ASAS) monitors bright stars (8 < V <14 mag) south of declination +28°. The ASAS Catalogue of VariableStars (ACVS) presently contains 50099 objects; among them are 2212objects classified as RR Lyrae pulsating variables. We use ASASphotometric V-band data to search for multiperiodicity in those stars.We find that 73 of 1435 RRab stars and 49 of 756 RRc stars exhibit theBlazhko effect. We observe a deficiency of RRab Blazhko variables withmain pulsation periods greater than 0.65 d. The Blazhko periods of RRcstars exhibit a strongly bimodal distribution. During our study wediscovered the Blazhko effect with multiple periods in object ASAS050747-3351.9 = SU Col. Blazhko periods of 89.3 and 65.8 d and acandidate of 29.5 d were identified with periodogram peaks near thefirst three harmonics of the main pulsation. These observations mayinspire new models of the Blazhko effect, which has eluded a consistenttheory since its discovery about one hundred years ago. Long-term lightcurve changes were found in 29 stars. We also found 19 Galactic doublemode pulsators (RRd), of which four are new discoveries, raising thenumber of ASAS discoveries of such objects to 16, out of 27 known in thefield of our Galaxy.

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

Southern RR Lyrae Stars Exhibiting the Blazhko Effect
Blazhko periods are given for 43 RRab stars based on data from ASAS3.

Proper identification of RR Lyrae stars brighter than 12.5 mag
RR Lyrae stars are of great importance for investigations of Galacticstructure. However, a complete compendium of all RR-Lyraes in the solarneighbourhood with accurate classifications and coordinates does notexist to this day. Here we present a catalogue of 561 local RR-Lyraestars (V_max ≤ 12.5 mag) according to the magnitudes given in theCombined General Catalogue of Variable Stars (GCVS) and 16 fainter ones.The Tycho2 catalogue contains ≃100 RR Lyr stars. However, manyobjects have inaccurate coordinates in the GCVS, the primary source ofvariable star information, so that a reliable cross-identification isdifficult. We identified RR Lyrae from both catalogues based on anintensive literature search. In dubious cases we carried out photometryof fields to identify the variable. Mennessier & Colome (2002,A&A, 390, 173) have published a paper with Tyc2-GCVSidentifications, but we found that many of their identifications arewrong.

RR Lyrae stars: kinematics, orbits and z-distribution
RR Lyrae stars in the Milky Way are good tracers to study the kinematicbehaviour and spatial distribution of older stellar populations. Arecently established well documented sample of 217 RR Lyr stars withV<12.5 mag, for which accurate distances and radial velocities aswell as proper motions from the Hipparcos and Tycho-2 catalogues areavailable, has been used to reinvestigate these structural parameters.The kinematic parameters allowed to calculate the orbits of the stars.Nearly 1/3 of the stars of our sample have orbits staying near the MilkyWay plane. Of the 217 stars, 163 have halo-like orbits fulfilling one ofthe following criteria: Θ < 100 km s-1, orbiteccentricity >0.4, and normalized maximum orbital z-distance>0.45. Of these stars roughly half have retrograde orbits. Thez-distance probability distribution of this sample shows scale heightsof 1.3±0.1 kpc for the disk component and 4.6±0.3 kpc forthe halo component. With our orbit statistics method we found a(vertical) spatial distribution which, out to z=20 kpc, is similar tothat found with other methods. This distribution is also compatible withthe ones found for blue (HBA and sdB) halo stars. The circular velocityΘ, the orbit eccentricity, orbit z-extent and [Fe/H] are employedto look for possible correlations. If any, it is that the metal poorstars with [Fe/H] <1.0 have a wide symmetric distribution aboutΘ=0, thus for this subsample on average a motion independent ofdisk rotation. We conclude that the Milky Way possesses a halo componentof old and metal poor stars with a scale height of 4-5 kpc having randomorbits. The presence in our sample of a few metal poor stars (thus partof the halo population) with thin disk-like orbits is statistically notsurprising. The midplane density ratio of halo to disk stars is found tobe 0.16, a value very dependent on proper sample statistics.

Subsystems of RR Lyrae Variable Stars in Our Galaxy
We have used published, high-accuracy, ground-based and satelliteproper-motion measurements, a compilation of radial velocities, andphotometric distances to compute the spatial velocities and Galacticorbital elements for 174 RR Lyrae (ab) variable stars in the solarneighborhood. The computed orbital elements and published heavy-elementabundances are used to study relationships between the chemical,spatial, and kinematic characteristics of nearby RR Lyrae variables. Weobserve abrupt changes of the spatial and kinematic characteristics atthe metallicity [Fe/H]≈-0.95 and also when the residual spatialvelocities relative to the LSR cross the critical value V res≈290km/s. This provides evidence that the general population of RR Lyraestars is not uniform and includes at least three subsystems occupyingdifferent volumes in the Galaxy. Based on the agreement between typicalparameters for corresponding subsystems of RR Lyrae stars and globularclusters, we conclude that metal-rich stars and globular clusters belongto a rapidly rotating and fairly flat, thick-disk subsystem with a largenegative vertical metallicity gradient. Objects with larger metaldeficiencies can, in turn, be subdivided into two populations, but usingdifferent criteria for stars and clusters. We suggest that field starswith velocities below the critical value and clusters with extremelyblue horizontal branches form a spherical, slowly rotating subsystem ofthe protodisk halo, which has a common origin with the thick disk; thissubsystem has small but nonzero radial and vertical metallicitygradients. The dimensions of this subsystem, estimated from theapogalactic radii of orbits of field stars, are approximately the same.Field stars displaying more rapid motion and clusters with redderhorizontal branches constitute the spheroidal subsystem of the accretedouter halo, which is approximately a factor of three larger in size thanthe first two subsystems. It has no metallicity gradients; most of itsstars have eccentric orbits, many display retrograde motion in theGalaxy, and their ages are comparatively low, supporting the hypothesisthat the objects in this subsystem had an extragalactic origin.

Stars with the Largest Hipparcos Photometric Amplitudes
A list of the 2027 stars that have the largest photometric amplitudes inHipparcos Photometry shows that most variable stars are all Miras. Thepercentage of variable types change as a function of amplitude. Thiscompilation should also be of value to photometrists looking forrelatively unstudied, but large amplitude stars.

Kinematics of Metal-poor Stars in the Galaxy. II. Proper Motions for a Large Nonkinematically Selected Sample
We present a revised catalog of 2106 Galactic stars, selected withoutkinematic bias and with available radial velocities, distance estimates,and metal abundances in the range -4.0<=[Fe/H]<=0.0. This updateof the 1995 Beers & Sommer-Larsen catalog includes newly derivedhomogeneous photometric distance estimates, revised radial velocitiesfor a number of stars with recently obtained high-resolution spectra,and refined metallicities for stars originally identified in the HKobjective-prism survey (which account for nearly half of the catalog)based on a recent recalibration. A subset of 1258 stars in this cataloghave available proper motions based on measurements obtained with theHipparcos astrometry satellite or taken from the updated AstrographicCatalogue (second epoch positions from either the Hubble Space TelescopeGuide Star Catalog or the Tycho Catalogue), the Yale/San Juan SouthernProper Motion Catalog 2.0, and the Lick Northern Proper Motion Catalog.Our present catalog includes 388 RR Lyrae variables (182 of which arenewly added), 38 variables of other types, and 1680 nonvariables, withdistances in the range 0.1 to 40 kpc.

Kinematics of Metal-poor Stars in the Galaxy. III. Formation of the Stellar Halo and Thick Disk as Revealed from a Large Sample of Nonkinematically Selected Stars
We present a detailed analysis of the space motions of 1203solar-neighborhood stars with metal abundances [Fe/H]<=-0.6, on thebasis of a catalog, of metal-poor stars selected without kinematic biasrecently revised and supplemented by Beers et al. This sample, havingavailable proper motions, radial velocities, and distance estimates forstars with a wide range of metal abundances, is by far the largest suchcatalog to be assembled to date. We show that the stars in our samplewith [Fe/H]<=-2.2, which likely represent a ``pure'' halo component,are characterized by a radially elongated velocity ellipsoid(σU,σV,σW)=(141+/-11,106+/-9, 94+/-8) km s-1 and small prograde rotation=30 to 50 km s-1, consistent withprevious analysis of this sample by Beers and Sommer-Larsen based onradial velocity information alone. In contrast to the previous analysis,we find a decrease in with increasingdistance from the Galactic plane for stars that are likely to be membersof the halo population(Δ/Δ|Z|=-52+/-6 km s-1kpc-1), which may represent the signature of a dissipativelyformed flattened inner halo. Unlike essentially all previouskinematically selected catalogs, the metal-poor stars in our sampleexhibit a diverse distribution of orbital eccentricities, e, with noapparent correlation between [Fe/H] and e. This demonstrates, clearlyand convincingly, that the evidence offered in 1962 by Eggen,Lynden-Bell, & Sandage for a rapid collapse of the Galaxy, anapparent correlation between the orbital eccentricity of halo stars withmetallicity, is basically the result of their proper-motion selectionbias. However, even in our nonkinematically selected sample, we haveidentified a small concentration of high-e stars at [Fe/H]~-1.7, whichmay originate, in part, from infalling gas during the early formation ofthe Galaxy. We find no evidence for an additional thick disk componentfor stellar abundances [Fe/H]<=-2.2. The kinematics of theintermediate-abundance stars close to the Galactic plane are, in part,affected by the presence of a rapidly rotating thick disk component with ~=200 km s-1 (with a verticalvelocity gradient on the order ofΔ/Δ|Z|=-30+/-3 km s-1kpc-1) and velocity ellipsoid (σU,σV, σW)=(46+/-4, 50+/-4, 35+/-3) kms-1. The fraction of low-metallicity stars in the solarneighborhood that are members of the thick disk population is estimatedas ~10% for -2.2<[Fe/H]<=-1.7 and ~30% for -1.7<[Fe/H]<=-1.We obtain an estimate of the radial scale length of the metal-weak thickdisk of 4.5+/-0.6 kpc. We also analyze the global kinematics of thestars constituting the halo component of the Galaxy. The outer part ofthe halo, which we take to be represented by local stars on orbitsreaching more than 5 kpc from the Galactic plane, exhibits no systematicrotation. In particular, we show that previous suggestions of thepresence of a ``counter-rotating high halo'' are not supported by ouranalysis. The density distribution of the outer halo is nearly sphericaland exhibits a power-law profile that is accurately described asρ~R-3.55+/-0.13. The inner part of the halo ischaracterized by a prograde rotation and a highly flattened densitydistribution. We find no distinct boundary between the inner and outerhalo. We confirm the clumping in angular-momentum phase space of a smallnumber of local metal-poor stars noted in 1999 by Helmi et al. We alsoidentify an additional elongated feature in angular-momentum phase spaceextending from the clump to regions with high azimuthal rotation. Thenumber of members in the detected clump is not significantly increasedfrom that reported by Helmi et al., even though the total number of thesample stars we consider is almost triple that of the previousinvestigation. We conclude that the fraction of halo stars that may havearisen from the precursor object of this clump may be smaller than 10%of the present Galactic halo, as previously suggested. The implicationsof our results for the formation of the Galaxy are discussed, inparticular in the context of the currently favored cold dark mattertheory of hierarchical galaxy formation.

Systematics of RR Lyrae Statistical Parallax. III. Apparent Magnitudes and Extinctions
We sing the praises of the central limit theorem. Having previouslyremoved all other possible causes of significant systematic error in thestatistical-parallax determination of RR Lyrae absolute magnitudes, weinvestigate systematic errors from two final sources of input data:apparent magnitudes and extinctions. We find corrections due to each ofabout 0.05 mag, i.e., about half the statistical error. However, theseare of opposite sign and so approximately cancel out. Theapparent-magnitude system that we previously adopted from Layden et al.was calibrated to the photoelectric photometry of Clube & Dawe.Using Hipparcos photometry and archival modern ground-based photometry,we show that the Clube & Dawe system is about 0.06 mag too bright.Extinctions were previously based on the map of Burstein & Heiles,which was constructed from H I maps. We argue that extinctions shouldrather be estimated using the new map of Schlegel, Finkbeiner, &Davis based on COBE and IRAS measurements of dust emission. Thissubstitution increases the mean estimated extinction by about 0.05 mag,primarily because of a difference in the zero point of the two maps. Ourfinal estimate for the absolute magnitude is M_V = 0.77 +/- 0.13 at[Fe/H] = -1.60 for a pure sample of 147 halo RR Lyrae stars, or M_V =0.80 +/- 0.11 at [Fe/H] = -1.71 if we incorporate kinematic informationfrom 716 nonkinematically selected non-RR Lyrae stars from Beers &Sommer-Larsen. These are 2 and 3 sigma fainter than recentdeterminations of M_V based on main-sequence fitting of clusters usingHipparcos measurements of subdwarfs by Reid and Gratton et al. Sincestatistical parallax is being cleared of systematic errors and since theprobability of a more than 2 sigma statistical fluctuation is less than1/20, we conclude that these brighter determinations may be in error. Inthe course of these three papers, we have corrected six systematicerrors whose absolute values total 0.20 mag. Had these, contrary to theexpectation of the central limit theorem, all lined up one way, theycould have resolved the conflict in favor of the brighterdeterminations. In fact, the net change was only 0.06 mag.

Early evolution of the Galactic halo revealed from Hipparcos observations of metal-poor stars
The kinematics of 122 red giant and 124 RR Lyrae stars in the solarneighborhood are studied using accurate measurements of their propermotions obtained by the Hipparcos astrometry satellite, combined withtheir published photometric distances, metal abundances, and radialvelocities. A majority of these sample stars have metal abundances of(Fe/H) = -1 or less and thus represent the old stellar populations inthe Galaxy. The halo component, with (Fe/H) = -1.6 or less, ischaracterized by a lack of systemic rotation and a radially elongatedvelocity ellipsoid. About 16 percent of such metal-poor stars have loworbital eccentricities, and we see no evidence of a correlation between(Fe/H) and e. Based on the model for the e-distribution of orbits, weshow that this fraction of low-e stars for (Fe/H) = -1.6 or less isexplained by the halo component alone, without introducing the extradisk component claimed by recent workers. This is also supported by theabsence of a significant change in the e-distribution with height fromthe Galactic plane. In the intermediate-metallicity range, we find thatstars with disklike kinematics have only modest effects on thedistributions of rotational velocities and e for the sample at absolutevalue of z less than 1 kpc. This disk component appears to constituteonly 10 percent for (Fe/H) between -1.6 and -1 and 20 percent for (Fe/H)between -1.4 and -1.

The impact of HIPPARCOS on the RR Lyrae Distance Scale
Not Available

Light Curves for 40 Field RR Lyrae Variables
Photoelectric photometry in the {\it BV} passbands is presented for 33nearby RR Lyrae stars. CCD frames are used to recalibrate thephotographic photometry of an additional 7 RR Lyraes to the Johnson $B$band. Light curves are presented for all 40 stars, along with derivedlight curve parameters. For one subset of stars, reddenings anddistances are computed from the observed colors at minimum light,periods, mean magnitudes, and spectroscopic metal abundances taken fromthe literature. For a second subset of stars, metal abundances,distances, and reddenings are determined via Fourier decomposition ofthe light curves. The results of the two methods are compared. (SECTION:Stars)

Structural Properties of Pulsating Star Light Curves Through Fuzzy Divisive Hierarchical Clustering
Not Available

The Absolute Magnitude and Kinematics of RR Lyrae Stars Via Statistical Parallax
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996AJ....112.2110L&db_key=AST

Determination of [Fe/H] from the light curves of RR Lyrae stars.
We present an accurate and robust method for the calculation of [Fe/H]from the light curves of RRab stars. The method introduces aconsiderable improvement relative to our previously published formulae.First of all, it uses an improved and extended data base for the lightcurves and more accurate, very recent iron abundances. Secondly, the newdata base makes it possible to show that the basic relation between[Fe/H] and the Fourier parameters is linear and contains only the periodand one of the Fourier phases, most importantly φ_31_. Last but notleast, we derive interrelations among the Fourier parameters which helpus to filter out peculiar stars where more caution is needed inaccepting the calculated abundance. The applicability of the method isdemonstrated on independent samples of globular cluster stars.Peculiarities encountered in Blazhko variables and in some other casesare also discussed.

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

The Metallicities and Kinematics of RR Lyrae Variables.II. Galactic Structure and Formation from Local Stars
Abstract image available at:http://adsabs.harvard.edu/abs/1995AJ....110.2288L

The Henry Draper Extension Charts: A catalogue of accurate positions, proper motions, magnitudes and spectral types of 86933 stars
The Henry Draper Extension Charts (HDEC), published in the form offinding charts, provide spectral classification for some 87000 starsmostly between 10th and 11th magnitude. This data, being highlyvaluable, as yet was practically unusable for modern computer-basedastronomy. An earlier pilot project (Roeser et al. 1991) demonstrated apossibility to convert this into a star catalogue, using measurements ofcartesian coordinates of stars on the charts and positions of theAstrographic Catalogue (AC) for subsequent identification. We presenthere a final HDEC catalogue comprising accurate positions, propermotions, magnitudes and spectral classes for 86933 stars of the HenryDraper Extension Charts.

Kinematics of metal-poor stars in the galaxy
We discuss the kinematic properties of a sample of 1936 Galactic stars,selected without kinematic bias, and with abundances (Fe/H) is less thanor equal to -0.6. The stars selected for this study all have measuredradial velocities, and the majority have abundances determined fromspectroscopic or narrow-/intermediate-band photometric techniques. Incontrast to previous examinations of the kinematics of the metal-poorstars in the Galaxy, our sample contains large numbers of stars that arelocated at distances in excess of 1 kpc from the Galactic plane. Thus, amuch clearer picture of the nature of the metal-deficient populations inthe Galaxy can now be drawn.

A new method for the determination of [Fe/H] in RR Lyrae stars.
The Fourier parameters of the V light curves of the field RRab stars areused to fit their [Fe/H]. The method is based on the assumption that theobserved light curves depend only on a few physical parameters,including the chemical composition. We give two formulae which estimatethe observed [Fe/H] with an accuracy of 0.23-0.18dex. Each of theseexpressions consists of a second order polynom of 2-4 Fourier parametersand the period. The method is a powerful tool in estimating themetallicity when spectroscopic data are not available.

Post-main-sequence and POST red giant branch variables with pulsation periods less than one day
Post-main-sequence (mass 1 to 3 solar masses) and post-giant branch (0.5to 1 solar mass) pulsators are discussed on the basis of four color andH beta light curves published elsewhere. The post-main-sequencevariables, called ultrashort period cepheid (USPC) (delta Sct), pulsatein the fundamental and first harmonic modes of radial pulsation and, inmany cases, in nonradial modes. The variables for which photometryallows accurate, luminosity estimates and are known to pulsatesimultaneously in the fundamental and first harmonic or in thefundamental mode alone, define a PL relation (MV = -2.80 logP - 0.60, fundamental). It is notable that the slope of this relation isin the range of slopes found for classical cepheids. Accurate Vphotometry is lacking for many of the variables known as 'anomalouscepheids', but the available data divide them into low mass,pseudocepheids (BL Her and W Vir stars) and post-main-sequence USPC(delta Sct) variables. Four USPC in NGC 5053 and six in NGC 6466, forwhich accurate photometry is available, give remarkably consistentmoduli of 16.06 +/- 0.05 and 15.98 +/- 0.08 mag, respectively, for theclusters, in which they are blue stragglers similar to SX Phe inKapteyn's star group. The assumption that the four post-giant branchvariables, called VSPC (RR Lyr), S Ari, SU Dra, and ST Leo in Kapteyn'sstar group and RR Lyr in the Groombridge 1830 group, are physicalmembers of these groups and share their V-velocities, leads to acalibration of the photometry for the derivation of reddening,luminosity, and heavy element abundance of 45 field variables. Theresulting reddenings are consistent with values obtained by othermethods and the metallicities are consistent with the most accuratelyavailable spectroscopic determinations of delta S and of Ca II K. Theluminosities of the bulk of the variables confirm Sandage's (1993)relation between MV and (Fe/H). Four or five of the fieldvariables are probably binary, including BB Vir which Kinman &Carreta (1992) have independently noted as double. The PL relation forUSPC (delta Sct) variables intersects the horizontal branch (HB) near P= 0.3d and at least two field very short period cepheid (VSPC) (RR Lyr)star, FW Lup (0.484 d) and ST Pic (0.486 d) may be first overtonepulsators of the USPC (delta Sct) variety. A dozen field VSPC (RR Lyr)stars populate a (Fe/H), MV relation with the same slope asthe other stars but displaced 0.7 mag toward higher luminosities. Theonly cluster variable found to populate this diplaced relation is No. 9in 47 Tuc, although ST Vir, which may be a member of the Arcturus group,should also be considered. The elevated luminosities are unlikely to becaused by either evolution or errors in the photometric indices. Apossible source of these apparently young VSPC(RR Lyr) variables withhalo metallicity is in second (or third) generation globular clustersformed during an episodic collapse of the galaxy that produced metalpoor stars but in a dynamical situation that hastened the disruption ofthe clusters, currently formed, before the still older globularclusters, created under conditions that have kept them in a moredisruptive free environment.

The very short period Cepheid (RR Lyr) variables. 2: Light and color curves of variables in the solar vicinity
Four color and H beta observations for 43 very short period Cepheids(VSPC, RRLyr) variables have been obtained with the Cerro Tololo andKitt Peak reflectors. The color systems are defined in Eggen (1982).Contemporary, photo-electric V-light curves have been used to establishthe phasing and the resulting periods used to compute the phases for thepresent observations. These phases are then adjusted to fit the V-lightcurves and the resulting periods and adjusted phases are given.

Detection of a galactic color gradient for blue horizontal-branch stars of the halo field and implications for the halo age and density distributions
Abstract image available at:http://adsabs.harvard.edu/abs/1991ApJ...375..121P

The Oosterhoff period effect - Luminosities of globular cluster zero-age horizontal branches and field RR Lyrae stars as a function of metallicity
Abstract image available at:http://adsabs.harvard.edu/abs/1990ApJ...350..631S

A photometric study of the bright cloud B in Sagittarius. VI - 1592 new variable stars and 30 diffuse objects
Abstract image available at:http://adsabs.harvard.edu/abs/1988A&AS...76..205T

Bump, hump and shock waves in the RR Lyrae stars - X Ari and RR LYR
High spectral resolution (0.2 and 0.7 A) observations of the H-alphaprofile in RR Lyrae stars X Ari and RR Lyr are presented. Theobservations have been carried out during bump and hump phases. A weakemission is presented during the bump (phi about 0.7) while during thehump (phi about 0.9), another stronger emission is observed. Only theemission associated with the hump is followed by a line absorptiondoubling. Both emissions are interpreted as the consequence of thepropagation of two independent shock waves. The 'main' (phi about 0.9)shock would be produced by the opacity mechanism giving the pulsation.The first or 'early' shock (phi about 0.7), associated with the bump,would be the consequence of the colliding of the upper atmosphericlayers with deeper ones during the infall phase. This is quiteconsistent with the nonlinear hydrodynamic model of Hill (1972). Thephysical origin of the bump in RR Lyrae stars would therefore bedifferent than that in Classical Cepheids (resonance mechanism).

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Scorpius
Right ascension:17h40m48.48s
Declination:-31°32'31.7"
Apparent magnitude:11.63
Proper motion RA:1.3
Proper motion Dec:-8.5
B-T magnitude:12.097
V-T magnitude:11.669

Catalogs and designations:
Proper Names
TYCHO-2 2000TYC 7376-369-1
USNO-A2.0USNO-A2 0525-28878019
HIPHIP 86512

→ Request more catalogs and designations from VizieR