Home     Getting Started     New Pictures     Picture of the Day     Blog New!     Login  

HD 61789


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Circumstellar Atomic Hydrogen in Evolved Stars
We present new results of a spectroscopic survey of circumstellar H I inthe direction of evolved stars made with the NançayRadiotelescope. The H I line at 21 cm has been detected in thecircumstellar shells of a variety of evolved stars: asymptotic giantbranch stars, oxygen-rich and carbon-rich stars, semiregular and Miravariables, and planetary nebulae. The emissions are generally spatiallyresolved, i.e., larger than 4', indicating shell sizes on the order of 1pc, which opens the possibility of tracing the history of mass loss overthe past ~104-105 yr. The line profiles aresometimes composite. The individual components generally have aquasi-Gaussian shape; in particular, they seldom show the double-hornprofile that would be expected from the spatially resolved opticallythin emission of a uniformly expanding shell. This probably implies thatthe expansion velocity decreases outward in the external shells (0.1-1pc) of these evolved stars. The H I line profiles do not necessarilymatch those of the CO rotational lines. Furthermore, the centroidvelocities do not always agree with those measured in the CO linesand/or the stellar radial velocities. The H I emissions may also beshifted in position with respect to the central stars. Without excludingthe possibility of asymmetric mass ejection, we suggest that these twoeffects could also be related to a nonisotropic interaction with thelocal interstellar medium. H I was detected in emission toward severalsources (ρ Per, α Her, δ2 Lyr, U CMi) thatotherwise have not been detected in any radio lines. Conversely, it wasnot detected in the two oxygen-rich stars with substantial mass-lossrate, NML Tau and WX Psc, possibly because these sources are young, withhydrogen in molecular form, and/or because the temperature of thecircumstellar H I gas is very low (<5 K).This paper is dedicated to the memory of Marie-Odile Mennessier(1940-2004).

Secular Evolution in Mira Variable Pulsations
Stellar evolution theory predicts that asymptotic giant branch (AGB)stars undergo a series of short thermal pulses that significantly changetheir luminosity and mass on timescales of hundreds to thousands ofyears. These pulses are confirmed observationally by the existence ofthe short-lived radioisotope technetium in the spectra of some of thesestars, but other observational consequences of thermal pulses are subtleand may only be detected over many years of observations. Secularchanges in these stars resulting from thermal pulses can be detected asmeasurable changes in period if the star is undergoing Mira pulsations.It is known that a small fraction of Mira variables exhibit largesecular period changes, and the detection of these changes among alarger sample of stars could therefore be useful in evolutionary studiesof these stars. The American Association of Variable Star Observers(AAVSO) International Database currently contains visual data for over1500 Mira variables. Light curves for these stars span nearly a centuryin some cases, making it possible to study the secular evolution of thepulsation behavior on these timescales. In this paper we present theresults of our study of period change in 547 Mira variables using datafrom the AAVSO. We use wavelet analysis to measure the period changes inindividual Mira stars over the span of available data. By making linearfits to the period versus time measurements, we determine the averagerates of period change, dlnP/dt, for each of these stars. We findnonzero dlnP/dt at the 2 σ significance level in 57 of the 547stars, at the 3 σ level in 21 stars, and at the level of 6 σor greater in eight stars. The latter eight stars have been previouslynoted in the literature, and our derived rates of period change largelyagree with published values. The largest and most statisticallysignificant dlnP/dt are consistent with the rates of period changeexpected during thermal pulses on the AGB. A number of other starsexhibit nonmonotonic period change on decades-long timescales, the causeof which is not yet known. In the majority of stars, the periodvariations are smaller than our detection threshold, meaning theavailable data are not sufficient to unambiguously measure slowevolutionary changes in the pulsation period. It is unlikely that morestars with large period changes will be found among heretoforewell-observed Mira stars in the short term, but continued monitoring ofthese and other Mira stars may reveal new and serendipitous candidatesin the future.

Beobachtungssergebnisse Bundesdeutsche Arbeitsgemeinschaft fuer Veraenderliche Sterne e.V.
Not Available

Beobachtungsergebnisse Bundesdeutsche Arbeitsgemeinschaft fur Veranderlichen Serne e.V.
Not Available

Long periodic variable stars
The information on Mira-type stars and stars adjacent to them at theHertzsprung -- Russel diagram is presented. A detailed description oftheir observational characteristics is given. We give a survey ofimportant observational works concerning: multicolor photometry withspecial attention to the IR emission, maser emission, shock waves, massloss, binarity, the problem of the pulsational mode, direct measurementsof angular and linear dimensions, statistic investigations, study ofkinematic characteristics etc. The most interesting problems regardinglong periodic variable stars are specified. Some attention is given tothe classification and evolutionary stage of these objects.

Reprocessing the Hipparcos data of evolved stars. III. Revised Hipparcos period-luminosity relationship for galactic long-period variable stars
We analyze the K band luminosities of a sample of galactic long-periodvariables using parallaxes measured by the Hipparcos mission. Theparallaxes are in most cases re-computed from the Hipparcos IntermediateAstrometric Data using improved astrometric fits and chromaticitycorrections. The K band magnitudes are taken from the literature andfrom measurements by COBE, and are corrected for interstellar andcircumstellar extinction. The sample contains stars of several spectraltypes: M, S and C, and of several variability classes: Mira, semiregularSRa, and SRb. We find that the distribution of stars in theperiod-luminosity plane is independent of circumstellar chemistry, butthat the different variability types have different P-L distributions.Both the Mira variables and the SRb variables have reasonablywell-defined period-luminosity relationships, but with very differentslopes. The SRa variables are distributed between the two classes,suggesting that they are a mixture of Miras and SRb, rather than aseparate class of stars. New period-luminosity relationships are derivedbased on our revised Hipparcos parallaxes. The Miras show a similarperiod-luminosity relationship to that found for Large Magellanic CloudMiras by Feast et al. (\cite{Feast-1989:a}). The maximum absolute Kmagnitude of the sample is about -8.2 for both Miras and semi-regularstars, only slightly fainter than the expected AGB limit. We show thatthe stars with the longest periods (P>400 d) have high mass lossrates and are almost all Mira variables.Based on observations from the Hipparcos astrometric satellite operatedby the European Space Agency (ESA \cite{Hipparcos}).Table \ref{Tab:data1} is only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/403/993

A weakly non-adiabatic one-zone model of stellar pulsations: application to Mira stars
There is growing observational evidence that the irregular changes inthe light curves of certain variable stars might be due to deterministicchaos. Supporting these conclusions, several simple models of non-linearoscillators have been shown to be capable of reproducing the observedcomplex behaviour. In this paper, we introduce a non-linear,non-adiabatic one-zone model intended to reveal the factors leading toirregular luminosity variations in some pulsating stars. We have studiedand characterized the dynamical behaviour of the oscillator as the inputparameters are varied. The parametric study implied values correspondingto stellar models in the family of long period variables and inparticular of Mira-type stars. We draw attention to certain solutionsthat reproduce with reasonable accuracy the observed behaviour of somepeculiar Mira variables.

Hipparcos red stars in the HpV_T2 and V I_C systems
For Hipparcos M, S, and C spectral type stars, we provide calibratedinstantaneous (epoch) Cousins V - I color indices using newly derivedHpV_T2 photometry. Three new sets of ground-based Cousins V I data havebeen obtained for more than 170 carbon and red M giants. These datasetsin combination with the published sources of V I photometry served toobtain the calibration curves linking Hipparcos/Tycho Hp-V_T2 with theCousins V - I index. In total, 321 carbon stars and 4464 M- and S-typestars have new V - I indices. The standard error of the mean V - I isabout 0.1 mag or better down to Hp~9 although it deteriorates rapidly atfainter magnitudes. These V - I indices can be used to verify thepublished Hipparcos V - I color indices. Thus, we have identified ahandful of new cases where, instead of the real target, a random fieldstar has been observed. A considerable fraction of the DMSA/C and DMSA/Vsolutions for red stars appear not to be warranted. Most likely suchspurious solutions may originate from usage of a heavily biased color inthe astrometric processing.Based on observations from the Hipparcos astrometric satellite operatedby the European Space Agency (ESA 1997).}\fnmsep\thanks{Table 7 is onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/397/997

Long period variable stars: galactic populations and infrared luminosity calibrations
In this paper HIPPARCOS astrometric and kinematic data are used tocalibrate both infrared luminosities and kinematical parameters of LongPeriod Variable stars (LPVs). Individual absolute K and IRAS 12 and 25luminosities of 800 LPVs are determined and made available in electronicform. The estimated mean kinematics is analyzed in terms of galacticpopulations. LPVs are found to belong to galactic populations rangingfrom the thin disk to the extended disk. An age range and a lower limitof the initial mass is given for stars of each population. A differenceof 1.3 mag in K for the upper limit of the Asymptotic Giant Branch isfound between the disk and old disk galactic populations, confirming itsdependence on the mass in the main sequence. LPVs with a thin envelopeare distinguished using the estimated mean IRAS luminosities. The levelof attraction (in the classification sense) of each group for the usualclassifying parameters of LPVs (variability and spectral types) isexamined. Table only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/374/968 or via ASTRIDdatabase (http://astrid.graal.univ-montp2.fr).

R Centauri: An Unusual Mira Variable in a He-Shell Flash
We present an analysis of AAVSO visual observations of the Mira variableR Cen from 1918 to 2000. The period of the dominant mode has beensteadily decreasing from 550 days at JD 2,434,000 (1951) to its presentvalue of 505-510 days. In the same interval, the pulsational amplitudehas decreased by 3 mag, from 5.5-11.8 V to 6.3-9.1 V. We suggest thatboth are caused by a He-shell flash, as the period decrease is similarto that of other He-shell flash stars such as R Hya, R Aql, and T UMi.The period change is consistent with the luminosity drop expectedimmediately after the flash, as predicted by He-shell flash models forstars of 2-3 Msolar or less. The light curve shows thefamiliar pattern of alternating deep and shallow minima, giving theappearance of double maxima. While the amplitude of the main mode hasdecreased 3 mag in the last 50 years, the amplitude of the secondarymode near 274 days has remained almost constant, so that the doublemaxima have nearly vanished from the light curve in recent years. Thepower spectrum between 1930 and 1966 shows harmonics up to 8 times themain frequency at 1/548 cycle day-1. The most likelyexplanation for the double-peaked light curve is a resonance between twomodes.

Stars with the Largest Hipparcos Photometric Amplitudes
A list of the 2027 stars that have the largest photometric amplitudes inHipparcos Photometry shows that most variable stars are all Miras. Thepercentage of variable types change as a function of amplitude. Thiscompilation should also be of value to photometrists looking forrelatively unstudied, but large amplitude stars.

Infrared colours for Mira-like long-period variables found in the (Mȯ<~10-7 Msolar yr-1) Hipparcos Catalogue
Near-infrared, JHKL, photometry is presented for 193 Mira andsemi-regular variables that were observed by Hipparcos; periods,bolometric magnitudes and amplitudes are derived for 92 of them. Becauseof the way in which the Hipparcos targets were selected, this group ofstars provides a useful data base of Miras with low mass-loss rates(Mȯ<~10-7Msolaryr-1).Various period-colour relationships are discussed in detail. The colour,particularly BCK = 10.86 - 38.10 K (J - K)0 +64.16(J - K)20 - 50.72(J -K)30 + 19, K-L, at a given period is found todepend on the pulsation amplitude of the star. A comparison with modelssuggests that this is a consequence of atmospheric extension, in thesense that large-amplitude pulsators have very extended atmospheres andredder Mȯ<10-7Msolaryr-1, K-L and H-K but bluerJ-H than their lower amplitude counterparts. The stars with veryextended atmospheres also have higher values of K-[12] and hence highermass-loss rates. This finding provides further evidence for the causalconnection between pulsation and mass loss. Two sequences are identifiedin the Hp-K versus logP diagram (where Hp is the Hipparcos broad-bandmagnitude) at short periods (logP<2.35). At a given period these twogroups have, on average, the same pulsation amplitude, but differentJHKL colours and spectral types. The short-period stars in the bluersequence have similar near-infrared colours to the Miras found inglobular clusters. Long-term trends in the infrared light curves arediscussed for stars that have sufficient data.

Mira kinematics from Hipparcos data: a Galactic bar to beyond the Solar circle
The space motions of Mira variables are derived from radial velocities,Hipparcos proper motions and a period-luminosity relation. Thepreviously known dependence of Mira kinematics on the period ofpulsation is confirmed and refined. In addition, it is found that Miraswith periods in the range 145-200d in the general Solar neighbourhoodhave a net radial outward motion from the Galactic Centre of75+/-18kms-1. This, together with a lag behind the circularvelocity of Galactic rotation of 98+/-19kms-1, is interpretedas evidence for an elongation of their orbits, with their major axesaligned at an angle of ~17° with the Sun-Galactic Centre line,towards positive Galactic longitudes. This concentration seems to be acontinuation to the Solar circle and beyond of the bar-like structure ofthe Galactic bulge, with the orbits of some local Miras probablypenetrating into the bulge. These conclusions are not sensitive to thedistance scale adopted. A further analysis is given of the short-period(SP) red group of Miras discussed in companion papers in this series. InAppendix A the mean radial velocities and other data for 842 oxygen-richMira-like variables are tabulated. These velocities were derived frompublished optical and radio observations.

Period-Luminosity-Colour distribution and classification of Galactic oxygen-rich LPVs. I. Luminosity calibrations
The absolute K magnitudes and kinematic parameters of about 350oxygen-rich Long-Period Variable stars are calibrated, by means of anup-to-date maximum-likelihood method, using Hipparcos parallaxes andproper motions together with radial velocities and, as additional data,periods and V-K colour indices. Four groups, differing by theirkinematics and mean magnitudes, are found. For each of them, we alsoobtain the distributions of magnitude, period and de-reddened colour ofthe base population, as well as de-biased period-luminosity-colourrelations and their two-dimensional projections. The SRa semiregulars donot seem to constitute a separate class of LPVs. The SRb appear tobelong to two populations of different ages. In a PL diagram, theyconstitute two evolutionary sequences towards the Mira stage. The Mirasof the disk appear to pulsate on a lower-order mode. The slopes of theirde-biased PL and PC relations are found to be very different from theones of the Oxygen Miras of the LMC. This suggests that a significantnumber of so-called Miras of the LMC are misclassified. This alsosuggests that the Miras of the LMC do not constitute a homogeneousgroup, but include a significant proportion of metal-deficient stars,suggesting a relatively smooth star formation history. As a consequence,one may not trivially transpose the LMC period-luminosity relation fromone galaxy to the other Based on data from the Hipparcos astrometrysatellite. Appendix B is only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Classification and Identification of IRAS Sources with Low-Resolution Spectra
IRAS low-resolution spectra were extracted for 11,224 IRAS sources.These spectra were classified into astrophysical classes, based on thepresence of emission and absorption features and on the shape of thecontinuum. Counterparts of these IRAS sources in existing optical andinfrared catalogs are identified, and their optical spectral types arelisted if they are known. The correlations between thephotospheric/optical and circumstellar/infrared classification arediscussed.

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

S stars: infrared colors, technetium, and binarity
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1993A&A...271..463J&db_key=AST

SiO maser emission and the intrinsic properties of Mira variables
Observations of SiO maser emission from 161 Mira variables distributedover a wide range of intrinsic parameters like spectral type, bolometricmagnitude, and amplitude of pulsation are reported. The observationswere made at 86.243 GHz, using the 10.4 m millimeter-wave telescope ofthe Raman Research Institute at Bangalore, India. The maser emission isfound to be restricted to Miras having mean spectral types between M6and M10. The IR period-luminosity relation for Mira variables isemployed to calculate their distances and hence estimate their maserluminosities from the observed fluxes. The maser luminosity is found tobe correlated with the bolometric magnitude of the Mira variable. On anH-R diagram, the masing Mira variables are shown to lie in a regiondistinct from that for the nonmasing ones.

OH/IR star color mimics
IR color criteria are used to select potential OH/IR stars from the IRASPoint Source Catalog. These OH/IR star color mimics, despite oftenhaving thick and demonstrably O-rich dust shells to shield theirmolecules against interstellar UV, have no 1612 MHz masers. The mostlikely reason for this is that these stars have degenerate companions,which collect an accretion disk from the red giant wind, which in turnprovides them with a local source of UV to dissociate molecules fromwithin their dust shells. In some cases this self-generated UV issufficient to excise all molecules from a shell, as happens withsymbiotic novae; in some cases it merely reduces their number and theability of a shell to support a maser. It is suggested that D-typesymbiotic stars can be identified among sources with thick opaque dustshells by a persistent absence of appropriate masers: these are theOH/IR color mimics.

New OH/IR stars from color-selected IRAS sources. II - an unbiased 1612 MHz survey
Results are reported from the Arecibo 1612-MHz survey of color-selectedIRAS sources. This paper examines 1294 sources, to detect 86, 79 of themnew detections, all with 25-micron fluxes greater than 2 Jy. The specialfeature of this work is its coverage of sources with high absolute valueof b(II), so the 1612-MHz characteristics of stars with small progenitormasses are determined. This provides direct observational evidence thatradiation pressure acting on dust grains influences mass loss from redgiants.

Criteria for OH maser emission from circumstellar envelopes of oxygen-rich Mira-type red giants
A large and representative sample of oxygen-rich Mira stars was selectedand observed in the 18 cm OH lines at their optical maximum. A total of14 new OH sources were detected. The OH maser emission is found in theintrinsically bright far-IR objects with late M spectral type. Othercharacteristics of the Miras are high (H-K) and (K-L) colors. Theirperiods are on average longer and their (25-12) colors on average redderthan those of non-OH Miras. The (J-H) and (60-25) colors are the samefor OH and non-OH stars. In most cases, OH and H2O masers existsimultaneously. The observed stars form a sequence along which theperiod and the stellar luminosity increase, the stellar radiusincreases, the dust shell radius increases by a smaller factor, thephotospheric temperature decreases but the dust shell temperature isroughly constant, and the mass loss rate and thus the thickness and thebrighntess of the envelope increase considerably.

Classification of Mira variables based on visual light curve shape
The paper presents classifications of 368 Mira variables of M, S and Cspectral classes based on the shape of their visual light curve. Theclassification is esentially based on Ludendorff's (1928) scheme and thelight curves used are mainly from the compilation of Campbell (1955).The distribution of light curves over period, mean amplitude, lightcurve asymmetry factor, period variability, and spectral class atmaximum is discussed.

Additional late-type stars with technetium
The results of a survey of 279 late-type giants and supergiants for thespectral lines of the radioactive element technetium (Tc I) at 4297,4262, and 4238 A are presented. The following conclusions are reached:(1) the presence of Tc correlates very strongly with the existence oflight variability; (2) evolutionary MS stars show Tc and spectroscopicMS stars do not show Tc; (3) single S stars show Tc; (4) SC stars showTc; (5) about 75 percent of the C stars show Tc; and (6) Ba II stars donot show Tc. The findings are compatible with predictions from stellarevolution theory.

Shape of the visual light curve and detection of a 1.35 CM H2O line in single M Miras
The probability of detecting a 1.35-cm H2O vapor line from single M Miravariables has been found to depend on the actual shape of the visuallight curve. Following the classification scheme of Ludendorff (1928),the probability of detection of H2O is highest for alpha-class lightcurves, reduces drastically for beta-class, and is almost nil forgamma-class. Similar tendency is exhibited by the mean luminosity of H2Oin the three classes as well.

A classification of miras from their visual and near-infrared light curves - an attempt to correlate them with their evolution
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1985A&A...144..463M&db_key=AST

Luminosities and mass loss rates of OH/H2O maser stars
It has been found that approximately 130 Mira variables, semiregular(SR) variables, or M supergiants have associated circumstellar H2Omasers. Such H2O masers are commonly associated with oxygen-rich Miravariables which have OH or SiO maser emission. However, it is not knownif a star which has one of these maser species also will have theothers. The present investigation is concerned with the results of anH2O survey of late-type stars, in which efforts have been made tominimize limitations related to the correlation of the properties of H2Oemission with stellar properties. Attention is given to H2O luminositiesfor the nearby stars, the relation of H2O luminosity to mass loss rate,the ratio of H2O to OH luminosities, and the pump mechanism for H2Omasers.

Water vapour absorption at 2.7 microns from M-type Mira variables
The study of molecular bands in the spectra of cool stars providesimportant information for an understanding of the stellar atmospheres.These bands include also some water vapor bands. Difficulties concerninga study of these bands arise as a result of telluric absorption. In viewof these difficulties, it was decided to make use of satellite datalisted in the Equatorial Infrared Catalogue 1 (EIC-1). Ground-basedobservations at 2.2 and 3.4 microns, and data at 2.7 microns provided bythe EIC-1 were evaluated to obtain information on the 2.7 micronabsorption feature in M-type Mira variables.

Suggested Identifications for Infrared Sources
Not Available

A low-detection limit search for OH emission from infrared stars
We have used the 300 m telescope of the Arecibo Observatory to examine154 cool luminous stars for 18 cm OH emission. Six of the stars (RU Ari,R Com, T Com, RX Oph, UU Peg, and RT Vir) were found to show OHemission. For the stars without OH emission, we have establisheddetection limits several times smaller than those of previous surveys.

OH Mira variables - The light curve shapes and implications for mass loss
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1977A&A....57..115B&db_key=AST

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Canis Minor
Right ascension:07h41m20.02s
Declination:+08°22'49.2"
Apparent magnitude:10.476
Proper motion RA:-6.2
Proper motion Dec:2.9
B-T magnitude:11.799
V-T magnitude:10.586

Catalogs and designations:
Proper Names
HD 1989HD 61789
TYCHO-2 2000TYC 778-813-1
USNO-A2.0USNO-A2 0975-05385640
HIPHIP 37459

→ Request more catalogs and designations from VizieR