Home     Getting Started     New Pictures     Picture of the Day     Blog New!     Login  

HD 142943


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Near-Infrared Interferometric, Spectroscopic, and Photometric Monitoring of T Tauri Inner Disks
We present high angular resolution observations with the KeckInterferometer, high-dispersion spectroscopic observations withKeck/NIRSPEC, and near-IR photometric observations from PAIRITEL of asample of 11 solar-type T Tauri stars in nine systems. We use theseobservations to probe the circumstellar material within 1 AU of theseyoung stars, measuring the circumstellar-to-stellar flux ratios andangular size scales of the 2.2 μm emission. Our sample spans a rangeof stellar luminosities and mass accretion rates, allowing investigationof potential correlations between inner disk properties and stellar oraccretion properties. We suggest that the mechanism by which the dustyinner disk is truncated may depend on the accretion rate of the source;in objects with low accretion rates, the stellar magnetospheres maytruncate the disks, while sublimation may truncate dusty disks aroundsources with higher accretion rates. We have also included in our sampleobjects that are known to be highly variable (based on previousphotometric and spectroscopic observations), and for several sources, weobtained multiple epochs of spectroscopic and interferometric data,supplemented by near-IR photometric monitoring, to search for inner diskvariability. While time-variable veilings and accretion rates areobserved in some sources, no strong evidence for inner disk pulsation isfound.

Proper-motion binaries in the Hipparcos catalogue. Comparison with radial velocity data
Context: .This paper is the last in a series devoted to the analysis ofthe binary content of the Hipparcos Catalogue. Aims: .Thecomparison of the proper motions constructed from positions spanning ashort (Hipparcos) or long time (Tycho-2) makes it possible to uncoverbinaries with periods of the order of or somewhat larger than the shorttime span (in this case, the 3 yr duration of the Hipparcos mission),since the unrecognised orbital motion will then add to the propermotion. Methods: .A list of candidate proper motion binaries isconstructed from a carefully designed χ2 test evaluatingthe statistical significance of the difference between the Tycho-2 andHipparcos proper motions for 103 134 stars in common between the twocatalogues (excluding components of visual systems). Since similar listsof proper-motion binaries have already been constructed, the presentpaper focuses on the evaluation of the detection efficiency ofproper-motion binaries, using different kinds of control data (mostlyradial velocities). The detection rate for entries from the NinthCatalogue of Spectroscopic Binary Orbits (S_B^9) is evaluated, as wellas for stars like barium stars, which are known to be all binaries, andfinally for spectroscopic binaries identified from radial velocity datain the Geneva-Copenhagen survey of F and G dwarfs in the solarneighbourhood. Results: .Proper motion binaries are efficientlydetected for systems with parallaxes in excess of ~20 mas, and periodsin the range 1000-30 000 d. The shortest periods in this range(1000-2000 d, i.e., once to twice the duration of the Hipparcos mission)may appear only as DMSA/G binaries (accelerated proper motion in theHipparcos Double and Multiple System Annex). Proper motion binariesdetected among S_B9 systems having periods shorter than about400 d hint at triple systems, the proper-motion binary involving acomponent with a longer orbital period. A list of 19 candidate triplesystems is provided. Binaries suspected of having low-mass(brown-dwarf-like) companions are listed as well. Among the 37 bariumstars with parallaxes larger than 5 mas, only 7 exhibit no evidence forduplicity whatsoever (be it spectroscopic or astrometric). Finally, thefraction of proper-motion binaries shows no significant variation amongthe various (regular) spectral classes, when due account is taken forthe detection biases.Full Table [see full textsee full text] is only available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/464/377

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

Effective temperature scale and bolometric corrections from 2MASS photometry
We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.

Statistical Constraints for Astrometric Binaries with Nonlinear Motion
Useful constraints on the orbits and mass ratios of astrometric binariesin the Hipparcos catalog are derived from the measured proper motiondifferences of Hipparcos and Tycho-2 (Δμ), accelerations ofproper motions (μ˙), and second derivatives of proper motions(μ̈). It is shown how, in some cases, statistical bounds can beestimated for the masses of the secondary components. Two catalogs ofastrometric binaries are generated, one of binaries with significantproper motion differences and the other of binaries with significantaccelerations of their proper motions. Mathematical relations betweenthe astrometric observables Δμ, μ˙, and μ̈ andthe orbital elements are derived in the appendices. We find a remarkabledifference between the distribution of spectral types of stars withlarge accelerations but small proper motion differences and that ofstars with large proper motion differences but insignificantaccelerations. The spectral type distribution for the former sample ofbinaries is the same as the general distribution of all stars in theHipparcos catalog, whereas the latter sample is clearly dominated bysolar-type stars, with an obvious dearth of blue stars. We point outthat the latter set includes mostly binaries with long periods (longerthan about 6 yr).

Observations of T Tauri Disks at Sub-AU Radii: Implications for Magnetospheric Accretion and Planet Formation
We determine inner disk sizes and temperatures for four solar-type (1-2Msolar) classical T Tauri stars, AS 207A, V2508 Oph, AS 205A,and PX Vul, using 2.2 μm observations from the Keck Interferometer.Nearly contemporaneous near-IR adaptive optics imaging photometry,optical photometry, and high-dispersion optical spectroscopy are used todistinguish contributions from the inner disks and central stars in theinterferometric observations. In addition, the spectroscopic andphotometric data provide estimates of stellar properties, mass accretionrates, and disk corotation radii. We model our interferometric andphotometric data in the context of geometrically flat accretion diskmodels with inner holes, and flared disks with puffed-up inner walls.Models incorporating puffed-up inner disk walls generally provide betterfits to the data, similar to previous results for higher mass Herbig Aestars. Our measured inner disk sizes are larger than disk truncationradii predicted by magnetospheric accretion models, with largerdiscrepancies for sources with higher mass accretion rates. We suggestthat our measured sizes correspond to dust sublimation radii, and thatoptically thin gaseous material may extend farther inward to themagnetospheric truncation radii. Finally, our inner disk measurementsconstrain the location of terrestrial planet formation as well aspotential mechanisms for halting giant planet migration.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Walraven photometry of nearby southern OB associations
Homogeneous Walraven (VBLUW) photometry is presented for 5260 stars inthe regions of five nearby southern OB associations: Scorpio Centaurus(Sco OB2), Orion OB1, Canis Major OB1, Monoceros OB1, and Scutum OB2.Derived V and (B - V) in the Johnson system are included.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Libra
Right ascension:15h57m57.77s
Declination:-17°05'24.0"
Apparent magnitude:7.819
Distance:75.188 parsecs
Proper motion RA:-61.8
Proper motion Dec:-106.7
B-T magnitude:8.4
V-T magnitude:7.867

Catalogs and designations:
Proper Names
HD 1989HD 142943
TYCHO-2 2000TYC 6191-1726-1
USNO-A2.0USNO-A2 0675-14943279
HIPHIP 78193

→ Request more catalogs and designations from VizieR