Home     Getting Started     New Pictures     Picture of the Day     Blog New!     Login  

HD 216018


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Magnetic fields of chemically peculiar stars. I. The catalog of magnetic CP stars
This is the first paper of the series dedicated to the analysis of themagnetism of chemically peculiar (CP) stars of the upper Main Sequence.We use our own measurements and published data to compile a catalog ofmagnetic CP stars containing a total of 326 objects with confidentlydetected magnetic fields and 29 stars which are very likely to possessmagnetic field. We obtained the data on the magnetism of theoverwhelming majority of the stars solely based on the analysis oflongitudinal field component B e . The surface magneticfield, B s , has been measured for 49 objects. Our analysisshows that the number of magnetic CP stars decreases with increasingfield strength in accordance with exponential law, and stars with B e exceeding 5kG occur rarely (about 3% objects of ourlist).

The Paschen-Back effect in the Li I 6708 Å line and the presence of lithium in cool magnetic Ap stars
Context: A number of cool magnetic Ap stars show a prominent feature atλ 6708 Å. Its identification with Li I remainscontroversial due to the lack of knowledge of the spectra of rare-earthelements that are strongly enhanced in peculiar stars so they canpotentially provide an alternative identification. Aims: We suggestinvestigating the 6708 Å line in Ap stars with strong magneticfields. In these objects, the magnetic broadening and splitting providesan additional, powerful criterium for line identification, allowing thewhole line profile to be used instead of depending on a mere coincidencein the observed and predicted wavelengths. Methods: The smallseparation of the Li I doublet components means that their magneticsplitting pattern deviates from the one expected for the Zeeman effect,even in relatively weak fields. We carried out detailed calculations ofthe transition between the Zeeman and Paschen-Back regimes in themagnetic splitting of the Li I line and computed polarised syntheticspectra for the range of field strength expected in Ap stars.Theoretical spectral synthesis is compared with the high-resolutionobservations of cool Ap stars HD 116114, HD 166473, and HD 154708, whichhave a mean field strength of 6.4, 8.6, and 24.5 kG, respectively, andshow a strong 6708 Å line. Results: High-resolution spectra forthe 6708 Å region were analysed for 17 magnetic Ap stars. Thepresence of the 6708 Å line is confirmed for 9 stars and reportedfor the first time for 6 stars. The strength of the Li I doublet doesnot correlate with the absorption features of any other element. Thestars HD 75445 and HD 201601 provide an extreme example of the twoobjects, which are dissimilar with respect to the 6708 Å line, butvery close in the atmospheric parameters and abundances of otherelements. We demonstrate that the observed profiles of the 6708 Åline in the strong field stars HD 116114, HD 166473, and HD 154708correspond fairly well to the theoretical calculations when assuming theLi I identification. Including the Paschen-Back effect improves theagreement with observations, especially for HD 154708. Conclusions:Results of our study confirm the Li I identification proposed for the6708 Å line in cool Ap stars.Based on observations collected at the European Southern Observatory,Paranal, Chile (ESO program 68.D-0254 and programs 072.D-0138,077.D-0150 retrieved through the ESO Archive).

Heavy calcium in CP stars
Large wavelength shifts of infrared triplet lines of CaII have beenobserved in the spectra of HgMn and magnetic Ap stars. They have beenattributed to the heavy calcium isotopes, including 48Ca. Onemember of the triplet, ?8542, had been either unavailable, or ofpoor quality in earlier spectra. The present material shows conclusivelythat the stellar ?8542 shifts are consistent with aninterpretation in terms of 48Ca. We find no relation betweenisotopic shifts of the CaII triplet lines, and those of HgII?3984. There is a marginal indication that the shifts areanticorrelated with the surface field strengths of the magnetic stars.We see sparse evidence for 48Ca in other chemically peculiarstars, for example, Am stars, metal-poor stars or chemically peculiarred giants. However, the sample is still very small, and the wavelengthsof all three triplet lines, including those in the Sun, show slightpositive shifts with respect to terrestrial positions.Some profiles of the CaII infrared triplet in the magnetic stars showextensive wings beyond a well-defined core. We can obtain reasonablefits to these profiles using a stratified calcium abundance similar tothat used by previous workers. There is no indication that either thestratification or the Zeeman effect significantly disturbs themeasurement of isotope shifts.Based on observations obtained at the European Southern Observatory,Paranal and La Silla, Chile [ESO programmes 076.D-0169(A) and076.C-0172(A)].E-mail: cowley@umich.edu (CRC); shubrig@eso.org (SH);castelli@ts.astro.it (FC); fgonzalez@casleo.gov.ar (JFG); bwolff@eso.org(BW)

Evolutionary state of magnetic chemically peculiar stars
Context: .The photospheres of about 5-10% of the upper main sequencestars exhibit remarkable chemical anomalies. Many of these chemicallypeculiar (CP) stars have a global magnetic field, the origin of which isstill a matter of debate. Aims: .We present a comprehensivestatistical investigation of the evolution of magnetic CP stars, aimedat providing constraints to the theories that deal with the origin ofthe magnetic field in these stars. Methods: .We have collectedfrom the literature data for 150 magnetic CP stars with accurateHipparcos parallaxes. We have retrieved from the ESO archive 142 FORS1observations of circularly polarized spectra for 100 stars. From thesespectra we have measured the mean longitudinal magnetic field, anddiscovered 48 new magnetic CP stars (five of which belonging to the rareclass of rapidly oscillating Ap stars). We have determined effectivetemperature and luminosity, then mass and position in the H-R diagramfor a final sample of 194 magnetic CP stars. Results: .We foundthat magnetic stars with M > 3 ~M_ȯ are homogeneouslydistributed along the main sequence. Instead, there are statisticalindications that lower mass stars (especially those with M ≤2~M_ȯ) tend to concentrate in the centre of the main sequence band.We show that this inhomogeneous age distribution cannot be attributed tothe effects of random errors and small number statistics. Our datasuggest also that the surface magnetic flux of CP stars increases withstellar age and mass, and correlates with the rotation period. For starswith M > 3~M_ȯ, rotation periods decrease with age in a wayconsistent with the conservation of the angular momentum, while for lessmassive magnetic CP stars an angular momentum loss cannot be ruledout. Conclusions: .The mechanism that originates and sustains themagnetic field in the upper main sequence stars may be different in CPstars of different mass.

An Atlas of K-Line Spectra for Cool Magnetic CP Stars: The Wing-Nib Anomaly (WNA)
We present a short atlas illustrating the unusual Ca II K-line profilesin upper main-sequence stars with anomalous abundances. Slopes of theprofiles for 10 cool, magnetic chemically peculiar (CP) stars changeabruptly at the very core, forming a deep ``nib.'' The nibs show thesame or nearly the same radial velocity as the other atomic lines. Thenear wings are generally more shallow than in normal stars. In threemagnetic CP stars, the K lines are too weak to show this shape, althoughthe nibs themselves are arguably present. The Ca II H lines also showdeep nibs, but the profiles are complicated by the nearby, strongHɛ absorption. The K-line structure is nearly unchanged withphase in β CrB and α Cir. Calculations, including NLTE, showthat other possibilities in addition to chemical stratification mayyield niblike cores.

An X-Ray Search for Compact Central Sources in Supernova Remnants. II. Six Large-Diameter SNRs
We present the second in a series of studies in which we have searchedfor undiscovered neutron stars in supernova remnants (SNRs). This paperdeals with the six largest SNRs in our sample, too large for Chandra orXMM-Newton to cover in a single pointing. These SNRs are nearby, withtypical distances of <1 kpc. We therefore used the ROSAT BrightSource Catalog and past observations in the literature to identify X-raypoint sources in and near the SNRs. Out of 54 sources, we wereimmediately able to identify optical/IR counterparts to 41 from existingdata. We obtained Chandra snapshot images of the remaining 13 sources.Of these, 10 were point sources with readily identified counterparts,two were extended, and one was not detected in the Chandra observationbut is likely a flare star. One of the extended sources may be a pulsarwind nebula, but if so it is probably not associated with the nearbySNR. We are then left with no identified neutron stars in these six SNRsdown to luminosity limits of ~1032 ergs s-1. Theselimits are generally less than the luminosities of typical neutron starsof the same ages, but are compatible with some lower luminosity sourcessuch as the neutron stars in the SNRs CTA 1 and IC 443.

A ~7.5 M⊕ Planet Orbiting the Nearby Star, GJ 876
High-precision, high-cadence radial velocity monitoring over the past 8yr at the W. M. Keck Observatory reveals evidence for a third planetorbiting the nearby (4.69 pc) dM4 star GJ 876. The residuals ofthree-body Newtonian fits, which include GJ 876 and Jupiter-masscompanions b and c, show significant power at a periodicity of 1.9379days. Self-consistently fitting the radial velocity data with a modelthat includes an additional body with this period significantly improvesthe quality of the fit. These four-body (three-planet) Newtonian fitsfind that the minimum mass of companion ``d'' is msini=5.89+/-0.54M⊕ and that its orbital period is 1.93776(+/-7×10-5) days. Assuming coplanar orbits, aninclination of the GJ 876 planetary system to the plane of the sky of~50° gives the best fit. This inclination yields a mass forcompanion d of m=7.53+/-0.70 M⊕, making it by far thelowest mass companion yet found around a main-sequence star other thanour Sun. Precise photometric observations at Fairborn Observatoryconfirm low-level brightness variability in GJ 876 and provide the firstexplicit determination of the star's 96.7 day rotation period. Evenhigher precision short-term photometric measurements obtained at LasCampanas imply that planet d does not transit GJ 876.Based on observations obtained at the W. M. Keck Observatory, which isoperated jointly by the University of California and the CaliforniaInstitute of Technology.

The calcium isotopic anomaly in magnetic CP stars
Chemically peculiar stars in the magnetic sequence can show the sameisotopic anomaly in calcium previously discovered for mercury-manganesestars in the non-magnetic sequence. In extreme cases, the dominantisotope is the exotic 48Ca. Measurements of Ca II linesarising from 3d-4p transitions reveal the anomaly by showing shifts upto 0.2 Å for the extreme cases - too large to be measurementerrors. We report measurements of miscellaneous objects, including twometal-poor stars, two apparently normal F-stars, an Am-star, and theN-star U Ant. Demonstrable anomalies are apparent only for the Ap stars.The largest shifts are found in rapidly oscillating Ap stars and in oneweakly magnetic Ap star, HD 133792. We note the possible relevance ofthese shifts for the GAIA mission.Based on observations obtained at the European Southern Observatory, LaSilla and Paranal, Chile (ESO programme Nos. 65.L-0316, 68.D-0254 and266.D-5655).

Catalogue of averaged stellar effective magnetic fields. I. Chemically peculiar A and B type stars
This paper presents the catalogue and the method of determination ofaveraged quadratic effective magnetic fields < B_e > for 596 mainsequence and giant stars. The catalogue is based on measurements of thestellar effective (or mean longitudinal) magnetic field strengths B_e,which were compiled from the existing literature.We analysed the properties of 352 chemically peculiar A and B stars inthe catalogue, including Am, ApSi, He-weak, He-rich, HgMn, ApSrCrEu, andall ApSr type stars. We have found that the number distribution of allchemically peculiar (CP) stars vs. averaged magnetic field strength isdescribed by a decreasing exponential function. Relations of this typehold also for stars of all the analysed subclasses of chemicalpeculiarity. The exponential form of the above distribution function canbreak down below about 100 G, the latter value representingapproximately the resolution of our analysis for A type stars.Table A.1 and its references are only available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/407/631 and Tables 3 to 9are only available in electronic form at http://www.edpsciences.org

Interpretation of the Core-Wing Anomaly of Balmer Line Profiles of Cool Ap Stars
A number of cool magnetic chemically peculiar stars exhibit abnormalprofiles of hydrogen Balmer lines. This anomaly, which is most clearlyvisible in Hα, consists of a sharp transition between broad Starkwings and an unusually narrow Doppler core. Although the core-winganomaly is a clear indication of an abnormal structure of theatmospheres of cool Ap stars, it has so far eluded even qualitativeinterpretation. In this Letter we report results of an attempt toreproduce the core-wing anomaly of Balmer lines by empiricalmodification of the thermal atmospheric structure. We find that it ispossible to obtain a very good fit to the inner and outer wings as wellas to reproduce the abrupt core-wing transition and widths of bothHα and Hβ by increasing the temperature by 500-1000 K atintermediate atmospheric layers (-4<=logτ5000<=-1).Thus, detailed analysis of hydrogen lines provides a very useful methodfor revealing the atmospheric structure of cool Ap stars and shouldserve as a crucial test for future self-consistent model atmospheres ofpeculiar stars. Based on observations obtained at the European SouthernObservatory, Very Large Telescope.

Magnetic AP Stars in the Hertzsprung-Russell Diagram
The evolutionary state of magnetic Ap stars is rediscussed using therecently released Hipparcos data. The distribution of the magnetic Apstars of mass below 3 Msolar in the H-R diagram differs fromthat of the normal stars in the same temperature range at a high levelof significance. Magnetic stars are concentrated toward the center ofthe main-sequence band. This is shown in two forms of the H-R diagram:one where logL is plotted against logTeff and a version moredirectly tied to the observed quantities, showing the astrometry-basedluminosity (Arenou & Luri) against the (B2-G)0 index ofGeneva photometry. In particular, it is found that magnetic fieldsappear only in stars that have already completed at least approximately30% of their main-sequence lifetime. No clear picture emerges as to thepossible evolution of the magnetic field across the main sequence. Hintsof some (loose) relations between magnetic field strength and otherstellar parameters are found: stars with shorter periods tend to havestronger fields, as do higher temperature and higher mass stars. Amarginal trend of the magnetic flux to be lower in more slowly rotatingstars may possibly be seen as suggesting a dynamo origin for the field.No correlation between the rotation period and the fraction of themain-sequence lifetime completed is observed, indicating that the slowrotation in these stars must already have been achieved before theybecame observably magnetic. Based on data from the ESA Hipparcossatellite and on observations collected at the European SouthernObservatory (La Silla, Chile; ESO programs Nos. 43.7-004, 44.7-012,49.7-030, 50.7-067, 51.7-041, 52.7-063, 53.7-028, 54.E-0416, and55.E-0751), at the Observatoire de Haute-Provence (Saint-Michell'Observatoire, France), at Kitt Peak National Observatory, and at theCanada-France-Hawaii Telescope.

The HR-diagram from HIPPARCOS data. Absolute magnitudes and kinematics of BP - AP stars
The HR-diagram of about 1000 Bp - Ap stars in the solar neighbourhoodhas been constructed using astrometric data from Hipparcos satellite aswell as photometric and radial velocity data. The LM method\cite{luri95,luri96} allows the use of proper motion and radial velocitydata in addition to the trigonometric parallaxes to obtain luminositycalibrations and improved distances estimates. Six types of Bp - Apstars have been examined: He-rich, He-weak, HgMn, Si, Si+ and SrCrEu.Most Bp - Ap stars lie on the main sequence occupying the whole width ofit (about 2 mag), just like normal stars in the same range of spectraltypes. Their kinematic behaviour is typical of thin disk stars youngerthan about 1 Gyr. A few stars found to be high above the galactic planeor to have a high velocity are briefly discussed. Based on data from theESA Hipparcos astrometry satellite and photometric data collected in theGeneva system at ESO, La Silla (Chile) and at Jungfraujoch andGornergrat Observatories (Switzerland). Tables 3 and 4 are onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

GPM - compiled catalogue of absolute proper motions of stars in selected areas of sky with galaxies.
Not Available

Spectropolarimetry of magnetic stars. VI. Longitudinal field, crossover and quadratic field: New measurements
New determinations of the mean longitudinal magnetic field, of thecrossover, and of the mean quadratic magnetic field of Ap stars arepresented. They are based on spectra recorded simultaneously in bothcircular polarizations at ESO with the CASPEC spectrograph fed by the3.6 m telescope. This paper discusses 95 observations of 44 stars. Amajor result of this study is the discovery that HD 137509 has apredominantly quadrupolar magnetic field, a strucuture previously foundin only a couple of stars. Improvement or revision of the determinationof the rotation period has been achieved for 3 stars. The stars studiedin this work include 14 rapidly oscillating Ap stars (for 6 of which noprevious attempt to detect a magnetic field had ever been made) and 21Ap stars with spectral lines resolved into their magnetically splitcomponents when observed at high enough dispersion in unpolarized light(for 9 of these stars, no determination of the longitudinal field hadbeen performed before). The observations discussed in this paper havebeen performed between 1989 and 1994, a period during which CASPEC andits Zeeman analyzer have progressively undergone various configurationchanges. The results reported here demonstrate that the polarimetricperformance of the instrument has remained unaltered through thesemodifications. Thanks to the latter, the achieved resolving power wasincreased, which resulted in improved magnetic measurement accuracies.Based on observations collected at the European Southern Observatory (LaSilla, Chile; ESO programmes Nos. 47.7-045 and 49.7-029).

The mean magnetic field modulus of AP stars
We present new measurements of the mean magnetic field modulus of asample of Ap stars with spectral lines resolved into magnetically splitcomponents. We report the discovery of 16 new stars having thisproperty. This brings the total number of such stars known to 42. Wehave performed more than 750 measurements of the mean field modulus of40 of these 42 stars, between May 1988 and August 1995. The best of themhave an estimated accuracy of 25 - 30 G. The availability of such alarge number of measurements allows us to discuss for the first time thedistribution of the field modulus intensities. A most intriguing resultis the apparent existence of a sharp cutoff at the low end of thisdistribution, since no star with a field modulus (averaged over therotation period) smaller than 2.8 kG has been found in this study. Formore than one third of the studied stars, enough field determinationswell distributed throughout the stellar rotation cycle have beenachieved to allow us to characterize at least to some extent thevariations of the field modulus. These variations are oftensignificantly anharmonic, and it is not unusual for their extrema not tocoincide in phase with the extrema of the longitudinal field (for thefew stars for which enough data exist about the latter). This, togetherwith considerations on the distribution of the relative amplitude ofvariation of the studied stars, supports the recently emerging evidencefor markedly non-dipolar geometry and fine structure of the magneticfields of most Ap stars. New or improved determinations of the rotationperiods of 9 Ap stars have been achieved from the analysis of thevariations of their mean magnetic field modulus. Tentative values of theperiod have been derived for 5 additional stars, and lower limits havebeen established for 10 stars. The shortest definite rotation period ofan Ap star with magnetically resolved lines is 3.4 deg, while thosestars that rotate slowest appear to have periods in excess of 70 or 75years. As a result of this study, the number of known Ap stars withrotation periods longer than 30 days is almost doubled. We brieflyrediscuss the slow-rotation tail of the period distribution of Ap stars.This study also yielded the discovery of radial velocity variations in 8stars. There seems to be a deficiency of binaries with short orbitalperiods among Ap stars with magnetically resolved lines. Based onobservations collected at the European Southern Observatory (La Silla,Chile; ESO programmes Nos. 43.7-004, 44.7-012, 49.7-030, 50.7-067,51.7-041, 52.7-063, 53.7-028, 54.E-0416, and 55.E-0751), at theObservatoire de Haute-Provence (Saint-Michel-l'Observatoire, France), atKitt Peak National Observatory, and at the Canada-France-HawaiiTelescope. Tables 2, 3, and 4 are also available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html.

Photoelectric observations of lunar occultations. XIII
Occultation observations made with the 0.76 m reflector at McDonaldObservatory are presented, for 319 events occurring between Jan. 15,1981 and Feb. 7, 1982. One table reports timings, and a second recordsobservations of 16 double stars, in particular, Nu Gem observationsreveal that the two close components are similar in color. This allowsan estimation of individual visible magnitudes (near 4.60 and 5.32)suggesting that the secondary is a late B-type main-sequence star. SAO158929 observations reveal systematic differences in angular diametervalues. Of the 16 observed double stars, 9 appear to be new discoveries,including SAO 93067, SAO 94595, and SAO 98770. A third table gives fullydarkened angular diameters for the stars SAO 158929, SAO 77516 Y Tau,and SAO 119035 Nu Vir.

Estimation of spectral classifications for bright southern stars with interesting Stromgren indices
This paper investigates the degree of success with which uvby photometrycan be applied to predict spectral classifications for 947 A, F, and Gstars brighter than an apparent magnitude of 8.3 and with four-colorindices indicating some kind of interesting, unusual, or peculiarspectrum. One or several possible spectral classifications are estimatedfor each star from photometry alone, double stars are distinguished, andthe estimates are compared with published classifications. The resultsshow that the framework provided by uvby photometry can be extended toinclude most G and K stars, reddened stars, peculiar stars, and certaintypes of double star.

Spectral types of stars with unusual photometric indices
The Kitt Peak 2.1-m Cassegrain spectrograph was used to obtain spectraof 92 A5-G0 stars measured by Olsen in the Stromgren four-color systemand predicted to be abnormal in the sense of excessive reddening, highluminosity, or abnormal composition. Of the five stars predicted to bereddened B or A stars, four were indeed such while for the fifth Olsenobserved the blended components. Of twelve stars predicted to besupergiants, one is a supergiant, four are giants, two are subgiants,three are Ap stars, and two are Am stars. Thus photometrically predictedsupergiants are actually stars above main sequence in two out of threecases but mostly much less luminous than expected. Of ten predictedweak-lined stars, only two were found to be really so. Am stars werewell predicted, though detection is contaminated with Ap and luminousstars. It is concluded that four-color photometry is useful in selectinginteresting stars, but is often unable to tell the specific type ofabnormality present.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Aquarius
Right ascension:22h49m26.52s
Declination:-11°20'57.2"
Apparent magnitude:7.629
Distance:109.529 parsecs
Proper motion RA:39.3
Proper motion Dec:8.5
B-T magnitude:8.033
V-T magnitude:7.663

Catalogs and designations:
Proper Names
HD 1989HD 216018
TYCHO-2 2000TYC 5816-1280-1
USNO-A2.0USNO-A2 0750-21320619
HIPHIP 112705

→ Request more catalogs and designations from VizieR