Home     Getting Started     New Pictures     Picture of the Day     Blog New!     Login  

HD 173371


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Fundamental parameters of Be stars located in the seismology fields of COROT
In preparation for the COROT space mission, we determined thefundamental parameters (spectral type, temperature, gravity, V sin i) ofthe Be stars observable by COROT in its seismology fields (64 Be stars).We applied a careful and detailed modeling of the stellar spectra,taking into account the veiling caused by the envelope, as well as thegravitational darkening and stellar flattening due to rapid rotation.Evolutionary tracks for fast rotators were used to derive stellar massesand ages. The derived parameters will be used to select Be stars assecondary targets (i.e. observed for 5 consecutive months) and short-runtargets of the COROT mission. Furthermore, we note that the main part ofour stellar sample falls in the second half of the main sequence lifetime, and that in most cases the luminosity class of Be stars isinaccurate in characterizing their evolutionary status.

Spectral Classification of Stars in A Supplement to the Bright Star Catalogue
MK spectral types are given for about 584 stars in A Supplement to theBright Star Catalogue. These are compared with Hipparcos parallaxes tocheck the reliability of those classifications. The estimated errors are+/-1.2 subtypes, and 10% of the luminosity classes may be wrong.

A Search for High-Velocity Be Stars
We present an analysis of the kinematics of Be stars based uponHipparcos proper motions and published radial velocities. We findapproximately 23 of the 344 stars in our sample have peculiar spacemotions greater than 40 km s-1 and up to 102 kms-1. We argue that these high-velocity stars are the resultof either a supernova that disrupted a binary or ejection by closeencounters of binaries in young clusters. Be stars spun up by binarymass transfer will appear as high-velocity objects if there wassignificant mass loss during the supernova explosion of the initiallymore massive star, but the generally moderate peculiar velocities of BeX-ray binaries indicate that the progenitors lose most of their massprior to the supernova (in accordance with model predictions). Binaryformation models for Be stars predict that most systems bypass thesupernova stage (and do not receive runaway velocities) to createultimately Be+white dwarf binaries. The fraction of Be stars spun up bybinary mass transfer remains unknown, since the post-mass transfercompanions are difficult to detect.

A representative sample of Be stars III: H band spectroscopy
We present H band (1.53 mu m-1.69 mu m) spectra of 57 isolated Be starsof spectral types O9-B9 and luminosity classes III, IV & V. The H iBrackett (n-4) series is seen in emission from Br-11-18, and Fe iiemission is also apparent for a subset of those stars with H i emission.No emission from species with a higher excitation temperature, such asHe ii or C iii is seen, and no forbidden line emission is present. Asubset of 12 stars show no evidence for emission from any species; thesestars appear indistinguishable from normal B stars of a comparablespectral type. In general the line ratios constructed from thetransitions in the range Br-11-18 do not fit case B recombination theoryparticularly well. Strong correlations between the line ratios withBr-gamma and spectral type are found. These results most likelyrepresent systematic variations in the temperature and ionization of thecircumstellar disc with spectral type. Weak correlations between theline widths and projected rotational velocity of the stars are observed;however no systematic trend for increasing line width through theBrackett series is observed.

A representative sample of Be stars. IV. Infrared photometry and the continuum excess
We present infra-red (JHK) photometry of 52 isolated Be\ stars ofspectral types O9-B9 and luminosity classes III-V. We describe a newmethod of reduction, enabling separation of interstellar reddening andcircumstellar excess. Using this technique we find that the discemission makes a maximum contribution to the optical (B-V) colour of afew tenths of a magnitude. We find strong correlations between a rangeof emission lines (Hα , Brgamma , Br11, and Br18) from the Bestars' discs, and the circumstellar continuum excesses. We also findthat stellar rotation and disc excess are correlated.

Statistical analysis of intrinsic polarization, IR excess and projected rotational velocity distributions of classical Be stars
We present the results of statistical analyses of a sample of 627 Bestars. The parameters of intrinsic polarization (p*),projected rotational velocity (v sin i), and near IR excesses have beeninvestigated. The values of p* have been estimated for a muchlarger and more representative sample of Be stars (~490 objects) thanpreviously. We have confirmed that most Be stars of early spectral typehave statistically larger values of polarization and IR excesses incomparison with the late spectral type stars. It is found that thedistributions of p* diverge considerably for the differentspectral subgroups. In contrast to late spectral types (B5-B9.5), thedistribution of p* for B0-B2 stars does not peak at the valuep*=0%. Statistically significant differences in the meanprojected rotational velocities (/line{vsin i}) are found for differentspectral subgroups of Be stars in the sense that late spectral typestars (V luminosity class) generally rotate faster than early types, inagreement with previously published results. This behaviour is, however,not obvious for the III-IV luminosity class stars. Nevertheless, thecalculated values of the ratio vt/vc of the truerotational velocity, vt, to the critical velocity forbreak-up, vc, is larger for late spectral type stars of allluminosity classes. Thus, late spectral type stars appear to rotatecloser to their break-up rotational velocity. The distribution of nearIR excesses for early spectral subgroups is bi-modal, the position ofthe second peak displaying a maximum value E(V-L)~ 1 . m 3for O-B1.5 stars, decreasing to E(V-L)~0. m8 for intermediatespectral types (B3-B5). It is shown that bi-modality disappears for latespectral types (B6-B9.5). No correlations were found betweenp* and near IR excesses and between E(V-L) and vsin i for thedifferent subgroups of Be stars. In contrast to near IR excesses, arelation between p* and far IR excesses at 12 mu m is clearlyseen. A clear relation between p* and vsin i (as well asbetween p* and /line{vsin i}/vc) is found by thefact that plots of these parameters are bounded by a ``triangular"distribution of p*: vsin i, with a decrease of p*towards very small and very large vsin i (and /line{vsini}/vc) values. The latter behaviour can be understood in thecontext of a larger oblateness of circumstellar disks for the stars witha rapid rotation. From the analysis of correlations between differentobservational parameters we conclude that circumstellar envelopes forthe majority of Be stars are optically thin disks with the range of thehalf-opening angle of 10degr

A representative sample of Be stars. II. K band spectroscopy
We present K band (2.05 mu m - 2.22 mu m) spectra of 66 isolated Bestars of spectral types O9-B9 and luminosity classes III, IV & V. Wefind that objects with He i features either in emission or absorptionare B3 or earlier. Objects with Mg ii emission but no He i are B2 to B4,while objects with Brgamma emission but no evidence of He i or Mg ii areB5 or later. Na i emission in the spectra of 4 objects appears toindicate that regions of the circumstellar envelopes of these stars mustbe shielded from direct stellar radiation. Systematic trends in the linestrength and profile of Brgamma are seen from early to late spectraltypes which can be understood in terms of differences in the disctemperature and density. 30 percent of the stars do not currently showevidence for line emission. Compared to the emission line stars theseobjects have a significantly lower mean rotational velocity and adistribution of spectral types that is significantly earlier. This canbe explained either as the original misidentification of these objectsas Be stars (i.e. they never had line emission), or as evidence thatstars with lower rotational velocities may be more prone to changesbetween the Be and B phases.

A representative sample of Be stars . I. Sample selection, spectral classification and rotational velocities
We present a sample of 58 Be stars containing objects of spectral typesO9 to B8.5 and luminosity classes III to V. We have obtained 3670 - 5070Angstroms spectra of the sample which are used to derive spectral typesand rotational velocities. We discuss the distribution of spectral typesand rotational velocities obtained and conclude that there are nosignificant selection effects in our sample.

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

A study of Be stars in the wavelength region around Paschen 7
This paper presents a study of the wavelength region 9840 - 10200centered upon P 7 in 74 Be type stars (B0-A0). We find a correlation ofthe P 7 emission with spectral type, the emission being strongest inearly types and disappearing toward A0. All emission lines are doublepeaked. Besides P 7 also several Fe II lines appear in emission, thestrongest being λ 9997. A strong positive correlation existsbetween all emissions and we conclude that Fe II is in emission wheneverP 7 is in emission. P 7 and λ 9997 also show a strong similarityin the details of the line structure. By comparison to stellar radii,the radii of emission-line regions are small and are similar for P 7 andthe Fe II emission lines.

The behavior of the O I line 7772 in Be and related stars
We describe the spectra of more than sixty stars in the 7570-7980region. We find that O I 7772 is always in emission in Be stars: in theearliest types it is seen in clear emission whereas in the later typesit fills in the observed absorption line. We find a good correlation ofthe line intensity of O I 8446 with O I 7772, the former being aboutfour times stronger than the latter. We confirm the correlation with FeII 7712. We also derive the outer radii of the line emission formingregions and find that O I 7772 is formed very close to the starssurface, whereas Fe II is formed farther away. We also provide criteriato distinguish, at this wavelength range, the classical Be, Herbig Ae-Beand B(e) stars.

UBV photometry of HD stars in the fields of selected cataclysmic variables.
Not Available

A southern Be star survey - Spectra and envelope radii
We describe the hydrogen line spectra of 63 southern Be stars, obtainedat ESO, Chile, in one observational run in August 1978. The spectra wererecorded on photographic plates. We also provide the outer radii of theline emission forming region for a number of stars, based upon theemission peak separation of the H4 and H5 lines. Average values soobtained are in good agreement with other determinations based upon asmaller number of objects.

Rotational velocity of Be stars correlated with emission characteristics
A sample of shell and nonshell B0e-B5e stars with weak and strongemission, and shell and nonshell B6e-B9e stars with weak emission, arestudied to seek a correlation between the rotational velocity of Bestars and the emissive strength. These results and the distributions ofV sin i indicate that the hottest Be stars, B0e-B5e, with rotationalvelocities of about 345 km/s can develop the characteristics of strongemission. For stars which are slightly less hot, or stars with slightlysmaller rotational velocities, only characteristics of weak emission canbe developed, and the shell characteristics only develop when the staris viewed at a greater-than-33-deg inclination to the pole. It is alsonoted that stars with large rotational velocities, the strong-emissionB0e-B5e and weak-emission B6e-B9e stars, can show metallic shellcharacteristics when seen near the equatorial plane.

Distances, reddenings and distribution of emission B-stars in the galactic centre region /l/ not greater than 45 deg
The distribution of Be stars in the region surrounding the Galacticcenter and their correlation to the spiral structure of the Galaxy hasbeen studied. The results are discussed in terms of reddenings anddistances of these stars. Data are presented on the Galacticcoordinates, colors, interstellar color excesses, reddening-freemagnitudes and colors, adopted absolute magnitudes, distances in kpc,distances from the Galactic plane, and MK spectral type.

Photometric observations of emission B-stars in the southern Milky Way
In order to study the distribution of Be stars and their correlation tothe local spiral structure of the Galaxy photoelectric UBV photometrywas carried out for a total of 488 Be stars located in the southernMilky Way between galactic longitudes 315 and 45 deg. UBV magnitudes arepresented for these stars.

Be-Stars and Shell Stars Observed with the 13-COLOR Photometric System - Part Two
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1984RMxAA...9..141S&db_key=AST

Be and shell stars observed with the 13-color photometric system
The 13-color photometry of a representative sample of 86 Be and shellstars observed at the San Pedro Martir Observatory (Mexico) ispresented. The data are separated into early-type stars (B0-B5),late-type stars (B6-B9), and supergiant and peculiar B stars. For thehighly variable Be and shell stars observed, a report of theirphotometric properties is given. To test the average characteristics ofthe Be stars, the classification scheme and the 140 bright Be stars ofJaschek et al. (1980) are used for comparison. Jaschek and co-workersseparated the Be stars into five groups according to spectroscopiccriteria. A table giving a description of their spectroscopic groups isincluded. It is pointed out that since a large number of Be and shellstars are variable, the reported magnitudes and colors correspond to the'averaged' values of the observations.

WBVR photometry of SS 433 - Spectra of the 'normal' star and the accretion disk
The characterization of SS 433 as a massive, eclipsing binary system hasbeen confirmed by the construction of continuous emission spectra of the'normal' star and the accretion disk in the wavelength range of 3500 Ato 2.2 microns. The investigation employed photometry of SS 433 atdifferent phases of the orbital period as well as photometric data inthe infrared range. The temperature of the normal star is about 20,000 Kand its mass is greater than 10 solar masses. The optically thinaccretion disk surrounds a relativistic object 'precessing' with aperiod of about 164 days. The spectrum of the projection of the disk canbe described by a Planck function with temperature of 50,000 K or more.Its bolometric luminosity is 10 to the 40th ergs/s or more. The analogybetween the processes taking place in the disk and those observed ingalactic nuclei and quasars is pointed out.

13-COLOR Photometry of 16 Variable Be-Stars - Part One - Photometry
Abstract image available at:http://adsabs.harvard.edu/abs/1982RMxAA...5..173A

Thirteen-color photometry of Be stars
Thirteen-color photometry made at the San Pedro Matir Observatory inBaja California for a number of spectroscopically variable Be and shellstars is presented. Several of these stars show photometric variabilityin the UV and/or IR over a time base of two to three years. The moreinteresting stars are analyzed in terms of color-color diagrams, colorexcesses, spectral characteristics and changes in their energydistributions. Prospects for future research are discussed.

A classification of Be stars
Based upon a sample of 140 stars observed over 20 years for which about5,000 spectrograms are available, a classification scheme of Be stars ispresented. This is the first attempt to subdivide the Be star group intophysically significant subgroups, from which typical objects can beselected for further study. The four groups proposed are based upon adiscussion of spectrum characteristics, multicolor photometry,polarization, rotational velocities, UV spectral types and timevariability. Starting with the group membership of a Be star,predictions can be made of the future behavior of it.

On the kinematical and spatial coincidence of optical and radio spiral arms in our galaxy.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1973A&A....24..393M&db_key=AST

A Test for Relative Motions of Gas and Young Stars
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1972PASP...84..273M&db_key=AST

Radial Velocities and Spectral Types for Fourteen Stars
Not Available

Axial Rotation in the Later B-Type Emission-Line Stars
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1966ApJ...145..121S&db_key=AST

A Catalogue of H II Regions.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1959ApJS....4..257S&db_key=AST

Symmetric Galactic Nebulae.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1955ApJ...121..604J&db_key=AST

A Catalogue of Emission Nebulae Near the Galactic Plane.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1953ApJ...118..362S&db_key=AST

Second Supplement to the Mount Wilson Catalogue and Bibliography of Stars of Classes B and a whose Spectra have Bright Hydrogen Lines.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1949ApJ...110..387M&db_key=AST

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Aquila
Right ascension:18h44m55.91s
Declination:-00°22'24.4"
Apparent magnitude:6.879
Distance:231.481 parsecs
Proper motion RA:0.9
Proper motion Dec:-16.9
B-T magnitude:6.848
V-T magnitude:6.877

Catalogs and designations:
Proper Names
HD 1989HD 173371
TYCHO-2 2000TYC 5113-100-1
USNO-A2.0USNO-A2 0825-12853601
HIPHIP 91987

→ Request more catalogs and designations from VizieR