Home     Getting Started     New Pictures     Picture of the Day     Blog New!     Login  

TYC 4372-937-1


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

The most plausible explanation of the cyclic period changes in close binaries: the case of the RS CVn-type binary WW Dra
Cyclic period changes are a fairly common phenomenon in close binarysystems and are usually explained as being caused either by the magneticactivity of one or both components or by the light travel time effect(LTTE) of a third body. We searched the orbital period changes in 182EA-type (including the 101 Algol systems used by Hall), 43 EB-type and53 EW-type binaries with known mass ratio and spectral type of thesecondary component. We reproduced and improved the diagram in Hallaccording to the new collected data. Our plots do not support theconclusion derived by Hall that cyclic period changes are restricted tobinaries having a secondary component with spectral type later than F5.The presence of period changes among systems with a secondary componentof early type indicates that magnetic activity is one, but not the only,cause of the period variation. It is discovered that cyclic periodchanges, probably resulting from the presence of a third body, are morefrequent in EW-type binaries among close systems. Therefore, the mostplausible explanation of the cyclic period changes is the LTTE throughthe presence of a third body. Using the century-long historical recordof the times of light minimum, we analysed the cyclic period change inthe Algol binary WW Dra. It is found that the orbital period of thebinary shows a ~112.2-yr cyclic variation with an amplitude of ~0.1977d.The cyclic oscillation can be attributed to the LTTE by means of a thirdbody with a mass no less than 6.43Msolar. However, nospectral lines of the third body were discovered, indicating that it maybe a candidate black hole. The third body is orbiting the binary at adistance closer than 14.4 au and may play an important role in theevolution of this system.

XID II: Statistical Cross-Association of ROSAT Bright Source Catalog X-ray Sources with 2MASS Point Source Catalog Near-Infrared Sources
The 18,806 ROSAT All Sky Survey Bright Source Catalog (RASS/BSC) X-raysources are quantitatively cross-associated with near-infrared (NIR)sources from the Two Micron All Sky Survey Point Source Catalog(2MASS/PSC). An association catalog is presented, listing the mostlikely counterpart for each RASS/BSC source, the probability Pid that the NIR source and X-ray source are uniquelyassociated, and the probability P no-id that none of the2MASS/PSC sources are associated with the X-ray source. The catalogincludes 3853 high quality (P id>0.98) X-ray-NIR matches,2280 medium quality (0.98 >= P id>0.9) matches, and4153 low quality (0.9 >= P id>0.5) matches. Of the highquality matches, 1418 are associations that are not listed in the SIMBADdatabase, and for which no high quality match with a USNO-A2 opticalsource was presented for the RASS/BSC source in previous work. Thepresent work offers a significant number of new associations withRASS/BSC objects that will require optical/NIR spectroscopy forclassification. For example, of the 6133 P id>0.92MASS/PSC counterparts presented in the association catalog, 2411 haveno classification listed in the SIMBAD database. These 2MASS/PSC sourceswill likely include scientifically useful examples of known sourceclasses of X-ray emitters (white dwarfs, coronally active stars, activegalactic nuclei), but may also contain previously unknown sourceclasses. It is determined that all coronally active stars in theRASS/BSC should have a counterpart in the 2MASS/PSC, and that the uniqueassociation of these RASS/BSC sources with their NIR counterparts thusis confusion limited.

Programmsterne: beobachtungen erwuenscht.
Not Available

A catalogue of chromospherically active binary stars (third edition)
The catalogue of chromospherically active binaries (CABs) has beenrevised and updated. With 203 new identifications, the number of CABstars is increased to 409. The catalogue is available in electronicformat where each system has a number of lines (suborders) with a uniqueorder number. The columns contain data of limited numbers of selectedcross references, comments to explain peculiarities and the position ofthe binarity in case it belongs to a multiple system, classicalidentifications (RS Canum Venaticorum, BY Draconis), brightness andcolours, photometric and spectroscopic data, a description of emissionfeatures (CaII H and K, Hα, ultraviolet, infrared),X-ray luminosity, radio flux, physical quantities and orbitalinformation, where each basic entry is referenced so users can go to theoriginal sources.

On the Period Variations of BH Virginis
In the present work, 17 new times of the light minimum for BHVir werederived from observations by Kjurkchieva etal. (2004, A&A, 424,993). Combining the new determined eclipse times with others compiledfrom the literature, the behavior of their O-C variation wasinvestigated. It has been found that the orbital period of BHVir showssome cyclic variations with three different periods: a long-periodvariation of 51.7years, and two short-period variations of 9.2years and11.8years, respectively. The mechanisms that could explain the periodchanges of the system are discussed.

Programmsterne: Beobachtungen erwuenscht.
Not Available

The rotation-activity correlation among G and K giants in binary systems
Aims.The present study aims (i) to test the existence of a correlationbetween magnetic activity and rotation among G and K giants in binarysystems and (ii) to test whether parameters other than rotation play arole in determining the X-ray emission level of intermediate-massgiants. Methods: The method consists in testing the existence ofcorrelations between measured stellar parameters including the X-raysurface flux, rotation period, Rossby number and surface gravity of asample of G and K giants with masses included between 1.5 M_ȯ and3.8 M_ȯ. Results: I found evidence that the X-ray surface fluxFX of intermediate-mass G and K giants is correlated withtheir rotation period P as previously observed on single G giants.Confidence in the degree of correlation is not higher when the Rossbynumber is used in place of the rotation period, but it significantlyimproves when stellar gravity g is taken into account. The empiricalrelation given by log (F_X) = -0.73 × log (P) + 0.64 × log(g/gȯ)+ 7.9 differs from the power-law dependence withan index of about -2 between X-ray to bolometric luminosity ratio andthe rotation period that is observed for main-sequence stars. The X-raysurface flux of single G giants and of intermediate-mass G and K giantsin close binary systems, such as RS CVn systems, also depends on thestellar gravity. This dependence could result from the effect of gravityon the electron density and emission measure of the X-ray emittingplasmas, as well as on the characteristic sizes of coronal magneticloops. The measured X-ray surface-flux dependence on gravity is,however, not as steep as the one predicted by simple models ofhydrostatic loops that assume a fixed ratio between the coronal energylosses by thermal conduction and by radiation. Conclusions: .I concludethat (i) a relation exists between the rotation and X-ray activity levelin giants, (ii) that this relation is not directly dependent on thepresence of a companion and applies to all intermediate-mass giants witheither G or K spectral type, and (iii) that gravity is an importantstellar parameter in determining the X-ray surface flux ofintermediate-mass giants.

Dynamical evolution of active detached binaries on the logJo-logM diagram and contact binary formation
Orbital angular momentum (OAM, Jo), systemic mass (M) andorbital period (P) distributions of chromospherically active binaries(CAB) and W Ursae Majoris (W UMa) systems were investigated. Thediagrams of and logJo-logM were formed from 119 CAB and 102 WUMa stars. The logJo-logM diagram is found to be mostmeaningful in demonstrating dynamical evolution of binary star orbits. Aslightly curved borderline (contact border) separating the detached andthe contact systems was discovered on the logJo-logM diagram.Since the orbital size (a) and period (P) of binaries are determined bytheir current Jo, M and mass ratio, q, the rates of OAM loss(dlogJo/dt) and mass loss (dlogM/dt) are primary parametersto determine the direction and the speed of the dynamical evolution. Adetached system becomes a contact system if its own dynamical evolutionenables it to pass the contact border on the logJo-logMdiagram. The evolution of q for a mass-losing detached system is unknownunless the mass-loss rate for each component is known. Assuming q isconstant in the first approximation and using the mean decreasing ratesof Jo and M from the kinematical ages of CAB stars, it hasbeen predicted that 11, 23 and 39 per cent of current CAB stars wouldtransform to W UMa systems if their nuclear evolution permits them tolive 2, 4 and 6 Gyr, respectively.

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

A catalogue of close binaries located in the δ Scuti region of the Cepheid instability strip
A catalogue of close eclipsing binary systems (detached andsemidetached) with at least one of the components located in the δScuti region of the Cepheid instability strip is presented. Thepositions of the stars in the instability strip are determined by theiraccurate temperatures and luminosities. Observationally detectedbinaries (20 semidetached, four detached and one unclassified) withoscillating components were included in the catalogue as a separatetable. The primaries of the oscillating Algols tend to be located nearthe blue edge of the instability strip. Using reliable luminosities andtemperatures determined by recent photometric and spectroscopic studies,we have found that at least one or two components of 71 detached and 90semidetached systems are located in the δ Scuti region of theCepheid instability strip. In addition, 36 detached or semidetachedsystems discovered by the Hipparcos satellite were also given as aseparate list. One of their components is seen in the δ Scutiregion, according to their spectral type or B - V colours. They arepotential candidate binaries with the δ Scuti-type pulsatingcomponents which need further photometric and spectroscopic studies inbetter precision. This catalogue covers information and literaturereferences for 25 known and 197 candidate binaries with pulsatingcomponents.

Are the W Ursae Majoris-type systems EK Comae Berenices and UX Eridani surrounded by circumstellar matter?
The variations of the orbital periods of two nearly neglected W UMa-typeeclipsing binaries, EK Comae Berenices and UX Eridani, are presentedthrough a detailed analysis of the O C diagrams. It is found that theorbital period of EK Com is decreasing and the period of UX Eridani isincreasing, and several sudden jumps have occurred in the orbitalperiods of both binaries. We analyze the mechanism(s), which mightunderlie the changes of the orbital periods of both systems, and obtainsome new results. The long-term decrease of the orbital period of EKComae Berenices might be caused by the decrease of the orbital angularmomentum due to a magnetic stellar wind (MSW) or by mass transfer fromthe more massive to the less massive component. The secular increase inthe orbital period of UX Eridani might be caused by mass transfer fromthe less massive to the more massive star. The possible mechanisms,which underlie the sudden changes in the orbital periods of the closebinary systems are as the followings: (1) the variations of thestructure due to the variation of the magnetic field; (2) the rapid massexchange between the close binaries and their circumstellar matter.Finally, the evolutionary status of the systems EK Comae Berenices andUX Eridani is discussed.

Mass loss and orbital period decrease in detached chromospherically active binaries
The secular evolution of the orbital angular momentum (OAM), thesystemic mass (M=M1+M2) and the orbital period of114 chromospherically active binaries (CABs) were investigated afterdetermining the kinematical ages of the subsamples which were setaccording to OAM bins. OAMs, systemic masses and orbital periods wereshown to be decreasing by the kinematical ages. The first-orderdecreasing rates of OAM, systemic mass and orbital period have beendetermined as per systemic OAM, per systemic mass and per orbitalperiod, respectively, from the kinematical ages. The ratio of d logJ/dlogM= 2.68, which were derived from the kinematics of the presentsample, implies that there must be a mechanism which amplifies theangular momentum loss (AML) times in comparison to isotropic AML ofhypothetical isotropic wind from the components. It has been shown thatsimple isotropic mass loss from the surface of a component or bothcomponents would increase the orbital period.

A catalogue of eclipsing variables
A new catalogue of 6330 eclipsing variable stars is presented. Thecatalogue was developed from the General Catalogue of Variable Stars(GCVS) and its textual remarks by including recently publishedinformation about classification of 843 systems and making correspondingcorrections of GCVS data. The catalogue1 represents thelargest list of eclipsing binaries classified from observations.

Spectroscopic and Photometric Observations of the Short-Period RS CVn-Type Star UV Piscium
High-resolution spectroscopic observations around the Hα line andlong-term BVRI photometry of the eclipsing short-period RS CVn star UVPsc are presented. The simultaneous solution of our radial velocitycurves and light curves yields the following values for the globalparameters of the components: M1=1.1 Msolar,M2=0.81 Msolar, R1=1.14Rsolar, and R2=0.85 Rsolar. Themeasured rotational broadening of the spectral lines corresponds toequatorial velocities V1=68.3 and V2=53.3 kms-1. Our spectral data reveal high activity of the twostellar components and very fast variability of the Hα line in thecenter of the primary eclipse. Modeling our photometric data showstrends in the starspot behavior. The trend toward active longitude beltscan have occasional exceptions. The observed secular luminosity decreasein 1999 may signal the onset of a new magnetic activity cycle.

Aus der Sektion Bedeckungsveranderliche.
Not Available

Beobachtungssergebnisse Bundesdeutsche Arbeitsgemeinschaft fuer Veraenderliche Sterne e.V.
Not Available

Up-to-Date Linear Elements of Eclipsing Binaries
About 1800 O-C diagrams of eclipsing binaries were analyzed and up-todate linear elements were computed. The regularly updated ephemerides(as a continuation of SAC) are available only in electronic form at theInternet address: http://www.as.ap.krakow.pl/ephem/.

Kinematics of chromospherically active binaries and evidence of an orbital period decrease in binary evolution
The kinematics of 237 chromospherically active binaries (CABs) werestudied. The sample is heterogeneous with different orbits andphysically different components from F to M spectral-type main-sequencestars to G and K giants and supergiants. The computed U, V, W spacevelocities indicate that the sample is also heterogeneous in velocityspace. That is, both kinematically younger and older systems exist amongthe non-evolved main sequence and the evolved binaries containing giantsand subgiants. The kinematically young (0.95 Gyr) subsample (N= 95),which is formed according to the kinematical criteria of moving groups,was compared with the rest (N= 142) of the sample (3.86 Gyr) toinvestigate any observational clues of binary evolution. Comparing theorbital period histograms between the younger and older subsamples,evidence was found supporting the finding of Demircan that the CABs losemass (and angular momentum) and evolve towards shorter orbital periods.The evidence of mass loss is noticeable on the histograms of the totalmass (Mh+Mc), which is compared between theyounger (only N= 53 systems available) and older subsamples (only N= 66systems available). The orbital period decrease during binary evolutionis found to be clearly indicated by the kinematical ages of 6.69, 5.19and 3.02 Gyr which were found in the subsamples according to the periodranges of logP<= 0.8, 0.8 < logP<= 1.7 and 1.7 < logP<=3, respectively, among the binaries in the older subsample.

Catalogue of Algol type binary stars
A catalogue of (411) Algol-type (semi-detached) binary stars ispresented in the form of five separate tables of information. Thecatalogue has developed from an earlier version by including more recentinformation and an improved layout. A sixth table lists (1872) candidateAlgols, about which fewer details are known at present. Some issuesrelating to the classification and interpretation of Algol-like binariesare also discussed.Catalogue is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/417/263

VLA Radio Positions of Stars: 1978-1995
VLA astrometric positions of the radio emission from 52 stars arereported, from observations obtained between 1978 and 1995. Thepositions of these stars have been obtained and reduced in a uniformmanner. Based on our measurements, the offset of the optical (Hipparcos)frame from the radio reference frame is in agreement with the Hipparcosextragalactic link results, within their mean errors. Comparison of theVLA measurements with the Hipparcos optical positions confirms earlierestimates of the accuracy of these positions as 30 mas. Long-termmeasurements of UX Ari have improved its proper motion.

WW Dra - ein heller BAV-Programmstern mit vielen Problemen.
Not Available

Beobachtungsegebnisse Bundesdeutsche Arbeitsgemainschaft fur Veranderliche Sterne e.V.
Not Available

A Photometric Study of the Contact Binary EQ Tauri
Light curves and photometric solutions for the contact binary EQ Tauriare presented. The light curves appear to exhibit a typical O'Connelleffect, with primary maximum being 0.030 mag (V) and 0.032 mag (B)brighter than secondary maximum. From the present times of minimum lightand those collected from the literature, changes in the orbital periodof the system are analyzed. The results reveal that the orbital periodof the system oscillates with a cycle of about 23 yr and an amplitude of8.5×10-7 days. The light curves and recent radialvelocity curves from Rucinski et al. are analyzed simultaneously usingthe latest version of the Wilson-Devinney code. The results suggest thatEQ Tau is a W Ursae Majoris contact binary of subtype A. The asymmetryof the light curves is explainable by starspot models. The cyclicalperiod change can most probably be attributed to a magnetic activitycycle in the secondary component. The absolute dimensions of EQ Tau arefound to be M1=1.32(3) Msolar,M2=0.59(2) Msolar, R1=1.16(3)Rsolar, R2=0.82(3) Rsolar,L1=1.35(12) Lsolar, L2=0.64(6)Lsolar, and A=2.55(3) Rsolar.

Orbital period modulation in close binaries due to cyclic alpha 2-dynamo activity
The question is answered whether dynamo-generated magnetic fields areable to produce such quadrupole terms in the gravity potential which canexplain the observed cyclic orbital variation of RS CVn stars. We startwith spherical dynamo models with outer convection zones but without anydifferential rotation, i.e. with alpha 2-dynamos which areknown as nonoscillating. With the known anisotropic alpha -tensor ofrapidly rotating stars the magnetic modes with the lowest dynamo numbersare nonaxisymmetric with a slow azimuthal drift. We also find, however,stable (i.e. with the lowest dynamo number) axisymmetric oscillatingmodes but only for a very special, highly inhomogeneous alpha -tensor.The dynamo model is a linear one with an arbitrary field amplitude whichcan be scaled in order to reproduce the observations. The star proves tobe as prolate during the maximum of the toroidal field energy and itproves to be as oblate during the maximum of the poloidal field energy.In the time average the influence of the toroidal field dominates andthe star is slightly prolate. From the computed temporal variations ofthe gravitation quadrupole moment a magnetic field of more than105 G is found in order to produce the period modulation oforder 10-5 which has been observed.

Determination of the Ages of Close Binary Stars on the Main Sequence from Evolutionary Model Stars of Claret and Gimenez
A grid of isochrones, covering a wide range of stellar ages from thezero-age main sequence to 10 billion years, is calculated in the presentwork on the basis of the model stars of Claret and Gimenez withallowance for convective overshoot and mass loss by the components. Theages of 88 eclipsing variables on the main sequence from Andersen'scatalog and 100 chromospherically active stars from Strassmeier'scatalog are calculated with a description of the method of optimuminterpolation. Comparisons with age determinations by other authors aregiven and good agreement is established.

Sechs auffallige Bedeckungssterne der BAV-Programme.
Not Available

Einige interessante Bedeckungsveraenderliche.
Not Available

Stars with the Largest Hipparcos Photometric Amplitudes
A list of the 2027 stars that have the largest photometric amplitudes inHipparcos Photometry shows that most variable stars are all Miras. Thepercentage of variable types change as a function of amplitude. Thiscompilation should also be of value to photometrists looking forrelatively unstudied, but large amplitude stars.

Orbital period studies of RS CVn-type binaries III. BH Virginis.
Not Available

On X-Ray Variability in Active Binary Stars
We have compared the X-ray emissions of active binary stars observed atvarious epochs by the Einstein and ROSAT satellites in order toinvestigate the nature of their X-ray variability. The primary aim ofthis work is to determine whether or not active binaries exhibitlong-term variations in X-ray emission, perhaps analogous to theobserved cyclic behavior of solar magnetic activity. We find that, whilethe mean level of emission of the sample remains steady, comparison ofdifferent ROSAT observations of the same stars shows significantvariation on timescales <~2 yr, with an ``effective variability''ΔI/I=0.32+/-0.04, where I and ΔI represent the mean emissionand variation from the mean emission, respectively. A comparison of theROSAT All-Sky Survey and later pointed observations with earlierobservations of the same stars carried out with Einstein yields onlymarginal evidence for a larger variation (ΔI/I=0.38+/-0.04 forEinstein vs. ROSAT All-Sky Survey and 0.46+/-0.05 for Einstein vs. ROSATpointed) at these longer timescales (~10 yr), thus indicating thepossible presence of a long-term component to the variability. Whetheror not this long-term component is due to the presence of cyclicvariability cannot be decided on the basis of existing data. However,assuming that this component is analogous to the observed cyclicvariability of the Sun, we find that the relative magnitude of thecyclic component in the ROSAT passband can, at most, be a factor of 4,i.e., I_cyc/I_min<4. This is to be compared with the correspondingbut significantly higher solar value of ~10-10^2 derived from GOES,Yohkoh, and Solrad data. These results are consistent with thesuggestions of earlier studies that a turbulent or distributive dynamomight be responsible for the observed magnetic activity on the mostactive, rapidly rotating stars.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Camelopardalis
Right ascension:07h16m24.74s
Declination:+73°19'56.9"
Apparent magnitude:10.203
Proper motion RA:-1.7
Proper motion Dec:-18.5
B-T magnitude:11.207
V-T magnitude:10.286

Catalogs and designations:
Proper Names
TYCHO-2 2000TYC 4372-937-1
USNO-A2.0USNO-A2 1575-02694144
HIPHIP 35197

→ Request more catalogs and designations from VizieR