Home     Getting Started     New Pictures     Picture of the Day     Blog New!     Login  

HD 87000


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Effective temperature scale and bolometric corrections from 2MASS photometry
We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.

K dwarfs and the chemical evolution of the solar cylinder
K dwarfs have lifetimes older than the present age of the Galactic disc,and are thus ideal stars for investigating the chemical evolution of thedisc. We have developed several photometric metallicity indicators for Kdwarfs, based on a sample of accurate spectroscopic metallicities for 34disc and halo G and K dwarfs. The photometric metallicities lead us todevelop a metallicity index for K dwarfs based only on their position inthe colour-absolute-magnitude diagram. Metallicities have beendetermined for 431 single K dwarfs drawn from the Hipparcos catalogue,selecting the stars by absolute magnitude and removing multiple systems.The sample is essentially a complete reckoning of the metal content innearby K dwarfs. We use stellar isochrones to mark the stars by mass,and select a subset of 220 of the stars, which is complete within anarrow mass interval. We fit the data with a model of the chemicalevolution of the solar cylinder. We find that only a modest cosmicscatter is required to fit our age-metallicity relation. The modelassumes two main infall episodes for the formation of the halo-thickdisc and thin disc, respectively. The new data confirm that the solarneighbourhood formed on a long time-scale of the order of 7 Gyr.

Photometric Abundances for G Dwarfs: A Cautionary Tale
Analysis of cluster and field star uvby data demonstrates the existenceof a previously undetected discrepancy in a widely used photometricmetallicity calibration for G dwarfs. The discrepancy is systematic andstrongly color dependent, reducing the estimated [Fe/H] for stars above[Fe/H]~-0.2 by between +0.1 and +0.4 dex and creating a deficit ofmetal-rich stars among dwarfs of mid G and later spectral type. Thesource of the problem, triggered for stars with b-y greater than about0.47, appears to be an enhanced metallicity dependence for thec1 index that increases as temperature declines. The linkbetween c1, normally a surface gravity indicator, andmetallicity produces two secondary effects. The deficit in thephotometric abundance for a cool dwarf is partially compensated by somedegree of evolution off the main sequence, and cool dwarfs withmetallicities significantly above the Hyades are found to havec1 indices that classify them as giants. The potential impactof the problem on stellar population studies is discussed.

Late-type members of young stellar kinematic groups - I. Single stars
This is the first paper of a series aimed at studying the properties oflate-type members of young stellar kinematic groups. We concentrate ourstudy on classical young moving groups such as the Local Association(Pleiades moving group, 20-150Myr), IC 2391 supercluster (35Myr), UrsaMajor group (Sirius supercluster, 300Myr), and Hyades supercluster(600Myr), as well as on recently identified groups such as the Castormoving group (200Myr). In this paper we compile a preliminary list ofsingle late-type possible members of some of these young stellarkinematic groups. Stars are selected from previously established membersof stellar kinematic groups based on photometric and kinematicproperties as well as from candidates based on other criteria such astheir level of chromospheric activity, rotation rate and lithiumabundance. Precise measurements of proper motions and parallaxes takenfrom the Hipparcos Catalogue, as well as from the Tycho-2 Catalogue, andpublished radial velocity measurements are used to calculate theGalactic space motions (U, V, W) and to apply Eggen's kinematic criteriain order to determine the membership of the selected stars to thedifferent groups. Additional criteria using age-dating methods forlate-type stars will be applied in forthcoming papers of this series. Afurther study of the list of stars compiled here could lead to a betterunderstanding of the chromospheric activity and their age evolution, aswell as of the star formation history in the solar neighbourhood. Inaddition, these stars are also potential search targets for directimaging detection of substellar companions.

Mining the Metal-rich Stars for Planets
We examine the correlation between stellar metallicity and the presenceof short-period planets. It appears that approximately 1% of dwarf starsin the solar neighborhood harbor short-period planets characterized bynear-circular orbits and orbital periods P<20 days. However, amongthe most metal-rich stars (defined as having [Fe/H]>0.2 dex), itappears that the fraction increases to 10%. Using the Hipparcos databaseand the Hauck & Mermilliod compilation of Strömgren uvbyphotometry, we identify a sample of 206 metal-rich stars of spectraltype K, G and F which have an enhanced probability of harboringshort-period planets. Many of these stars would be excellent candidatesfor addition to radial velocity surveys. We have searched the Hipparcosepoch photometry for transiting planets within our 206 star catalog. Wefind that the quality of the Hipparcos data is not high enough to permitunambiguous transit detections. It is, however, possible to identifycandidate transit periods. We then discuss various ramifications of thestellar metallicity-planet connection. First, we show that there ispreliminary evidence for increasing metallicity with increasing stellarmass among known planet-bearing stars. This trend can be explained by ascenario in which planet-bearing stars accrete an average of 30M⊕ of rocky material after the gaseous protoplanetarydisk phase has ended. We present dynamical calculations which suggestthat a survey of metallicities of spectroscopic binary stars can be usedto understand the root cause of the stellar metallicity-planetconnection.

The Vienna-KPNO search for Doppler-imaging candidate stars. I. A catalog of stellar-activity indicators for 1058 late-type Hipparcos stars
We present the results from a spectroscopic Ca ii H&K survey of 1058late-type stars selected from a color-limited subsample of the Hipparcoscatalog. Out of these 1058 stars, 371 stars were found to showsignificant H&K emission, most of them previously unknown; 23% withstrong emission, 36% with moderate emission, and 41% with weak emission.These spectra are used to determine absolute H&K emission-linefluxes, radial velocities, and equivalent widths of theluminosity-sensitive Sr ii line at 4077 Ä. Red-wavelengthspectroscopic and Strömgren y photometric follow-up observations ofthe 371 stars with H&K emission are used to additionally determinethe absolute Hα -core flux, the lithium abundance from the Li i6708 Å equivalent width, the rotational velocity vsin i, theradial velocity, and the light variations and its periodicity. Thelatter is interpreted as the stellar rotation period due to aninhomogeneous surface brightness distribution. 156 stars were found withphotometric periods between 0.29 and 64 days, 11 additional systemsshowed quasi-periodic variations possibly in excess of ~50 days. Further54 stars had variations but no unique period was found, and four starswere essentially constant. Altogether, 170 new variable stars werediscovered. Additionally, we found 17 new SB1 (plus 16 new candidates)and 19 new SB2 systems, as well as one definite and two possible new SB3systems. Finally, we present a list of 21 stars that we think are mostsuitable candidates for a detailed study with the Doppler-imagingtechnique. Tables A1--A3 are only available in electronic form at theCDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Ursa Major
Right ascension:10h04m57.05s
Declination:+67°25'21.8"
Apparent magnitude:8.704
Distance:40.502 parsecs
Proper motion RA:-16.5
Proper motion Dec:-79.4
B-T magnitude:9.759
V-T magnitude:8.792

Catalogs and designations:
Proper Names
HD 1989HD 87000
TYCHO-2 2000TYC 4143-816-1
USNO-A2.0USNO-A2 1500-05265663
HIPHIP 49387

→ Request more catalogs and designations from VizieR