Inici     Començant     Noves Imatges     Imatge del Dia     Blog New!     Login  

TYC 327-786-1


Contingut

Imatges

Carregar la teva Imatge

DSS Images   Other Images


Articles Relacionats

The C/O ratio at low metallicity: constraints on early chemical evolution from observations of Galactic halo stars
Aims: We present new measurements of the abundances of carbon and oxygenderived from high-excitation C i and O i absorption lines in metal-poorhalo stars, with the aim of clarifying the main sources of these twoelements in the early stages of the chemical enrichment of the Galaxy.Methods: We target 15 new stars compared to our previous study,with an emphasis on additional C/O determinations in the crucialmetallicity range -3 ⪉ [Fe/H]⪉ -2. The stellar effectivetemperatures were estimated from the profile of the Hβ line.Departures from local thermodynamic equilibrium were accounted for inthe line formation for both carbon and oxygen. The non-LTE effects arevery strong at the lowest metallicities but, contrary to what hassometimes been assumed in the past due to a simplified assessment, ofdifferent degrees for the two elements. In addition, for the 28 starswith [Fe/H] < -1 previously analysed, stellar parameters werere-derived and non-LTE corrections applied in the same fashion as forthe rest of our sample, giving consistent abundances for 43 halo starsin total. Results: The new observations and non-LTE calculationsstrengthen previous suggestions of an upturn in C/O towards lowermetallicity (particularly for [O/H] ⪉ -2). The C/O values derivedfor these very metal-poor stars are, however, sensitive to excitationvia the still poorly quantified inelastic H collisions. While these donot significantly affect the non-LTE results for C i, they greatlymodify the O i outcome. Adopting the H collisional cross-sectionsestimated from the classical Drawin formula leads to [C/O] ≈ 0 at[O/H] ≈ -3. To remove the upturn in C/O, near-LTE formation for O ilines would be required, which could only happen if the H collisionalefficiency with the Drawin recipe is underestimated by factors of up toseveral tens of times, a possibility which we consider unlikely. Conclusions: The high C/O values derived at the lowest metallicitiesmay be revealing the fingerprints of Population III stars or may signalrotationally-aided nucleosynthesis in more normal Population II stars.Based on data collected with the European Southern Observatory's VeryLarge Telescope (VLT) at the Paranal, Chile (programmes No. 67.D-0106and 73.D-0024) and with the Magellan Telescope at Las CampanasObservatory, Chile.

Lithium Isotopes in Population II Dwarfs
We address the evolution of lithium in Population II dwarf stars underthe joint effects of microscopic diffusion and tachocline mixing. Thisprocess relies on analytical developments and is also constrained byhelioseismology observations. It was successfully applied to solaranalogs but never investigated in halo stars. It is induced in the upperradiation zone by rotation and a slight differential rotation inlatitude. Consequently we modeled different possible rotation historiesof halo stars, showing that the initial rotation rate had no impact onlithium in the framework of tachocline mixing. We find a negligibleimpact of pre-main-sequence evolution on 7Li independent ofmetallicity provided that [Fe/H]<-1. On the contrary, microscopicdiffusion and tachocline turbulence act on the long term of mainsequence and shape the current 7Li-Teff patternfrom the turnoff down to 5000 K. The tachocline mixing models fit the7Li-Teff relation better than the pure microscopicdiffusion models. We address the issue of warm 7Li-poor starsand conclude that a moderate mass transfer from a companion couldexplain their composition. Finally, we discuss the lithium lighterisotope. The pre-main-sequence and main-sequence 6Lidepletion we compute seems difficult to reconcile with the currentobservations.

Speckle interferometry of metal-poor stars in the solar neighborhood. II
The results of speckle interferometric observations of 115 metal-poorstars ([m/H] < ‑1) within 250 pc from the Sun and with propermotions µ ≳ 0.2″/yr, made with the 6-m telescope of theSpecial Astrophysical Observatory of the Russian Academy of Sciences,are reported. Close companions with separations ranging from0.034″ to 1″ were observed for 12 objects—G76-21,G59-1, G63-46, G135-16, G168-42, G141-47, G142-44, G190-10, G28-43,G217-8, G130-7, and G89-14—eight of them are astrometricallyresolved for the first time. The newly resolved systems include onetriple star—G190-10. If combined with spectroscopic and visualdata, our results imply a single:binary:triple:quadruple star ratio of147:64:9:1 for a sample of 221 primary components of halo and thick-diskstars.

Beryllium in Ultra-Lithium-Deficient Halo Stars: The Blue Straggler Connection
There exists a small group of metal-deficient stars that have Liabundances well below the Li plateau that is defined by over 100unevolved stars with temperatures above 5800 K and values of[Fe/H]<-1.0. Abundances of Be have been determined for most of theseultra-Li-deficient stars in order to investigate the cause of the Lideficiencies. These Li-deficient stars have implications on the value ofprimordial Li. High-resolution and high signal-to-noise ratio spectrahave been obtained in the Be II spectral region near 3130 Å forsix ultra-Li-deficient stars with the Keck I telescope and its newUV-sensitive CCD on the upgraded HIRES. The spectrum synthesis techniquehas been used to determine Be abundances. All six stars are found tohave Be deficiencies also. Two have measurable but reduced Be, and fourhave only upper limits on Be. These results are consistent with the ideathat these Li- and Be-deficient stars are analogous to blue stragglers.The stars have undergone mass transfer events (or mergers) that destroyor dilute both Li and Be. The findings cannot be matched by the modelsthat predict that the deficiencies are due to extramixing in a subset ofhalo stars that were initially rapid rotators, with the possibleexception of one star, G139-8. Because the ultra-Li-deficient stars arealso Be-deficient, they appear to be genuine outliers in the populationof halo stars used to determine the Li plateau in that they no longerhave the Li in their atmospheres that was produced in the big bang.

Sulphur and zinc abundances in Galactic halo stars revisited
Aims.Based on a new set of sulphur abundances in very metal-poor starsand an improved analysis of previous data, we aim at resolving currentdiscrepancies on the trend of S/Fe vs. Fe/H and thereby gain betterinsight into the nucleosynthesis of sulphur. The trends of Zn/Fe andS/Zn will also be studied. Methods: High resolution VLT/UVES spectra of40 main-sequence stars with -3.3 < [Fe/H] < -1.0 are used toderive S abundances from the weak λ 8694.6 S I line and thestronger λ λ 9212.9,9237.5 pair of S I lines. For onestar, the S abundance is also derived from the S I triplet at 1.046μm recently observed with the VLT infrared echelle spectrographCRIRES. Fe and Zn abundances are derived from lines in the blue part ofthe UVES spectra, and effective temperatures are obtained from theprofile of the Hβ line. Results: Comparison of sulphur abundancesfrom the weak and strong S I lines provides important constraints onnon-LTE effects. The high sulphur abundances reported by others for somemetal-poor stars are not confirmed; instead, when taking non-LTEcorrections into account, the Galactic halo stars distribute around aplateau at [S/Fe] ~ +0.2 dex with a scatter of 0.07 dex only. [Zn/Fe] isclose to zero for metallicities in the range -2.0 < [Fe/H] < -1.0but increases to a level of [Zn/Fe] ~ +0.1 to +0.2 dex in the range -2.7< [Fe/H] < -2.0. At still lower metallicities [Zn/Fe] risessteeply to a value of [Zn/Fe] ~ +0.5 dex at [Fe/H] = -3.2. Conclusions:The trend of S/Fe vs. Fe/H corresponds to the trends of Mg/Fe, Si/Fe,and Ca/Fe and indicates that sulphur in Galactic halo stars has beenmade by α-capture processes in massive SNe. The observed scatterin S/Fe is much smaller than predicted from current stochastic models ofthe chemical evolution of the early Galaxy, suggesting that either themodels or the calculated yields of massive SNe should be revised. Wealso examine the behaviour of S/Zn and find that departures from thesolar ratio are significantly reduced at all metallicities if non-LTEcorrections to the abundances of these two elements are adopted. Thiseffect, if confirmed, would reduce the usefulness of the S/Zn ratio as adiagnostic of past star-formation activity, but would bring closertogether the values measured in damped Lyman-alpha systems and inGalactic stars.Based on observations collected at the European Southern Observatory atParanal, Chile (programmes No. 67.D-0106, 73.D-0024 and CRIRES scienceverification program 60.A-9072). Table 1 and Appendices are onlyavailable in electronic form at http://www.aanda.org

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

The non-LTE line formation of neutral carbon in late-type stars
Aims.We investigate the non-Local Thermodynamic Equilibrium (non-LTE)line formation of neutral carbon in late-type stars in order to removesome of the potential systematic errors in stellar abundance analysesemploying C i features. Methods: .The statistical equilibrium codeMULTI was used on a grid of plane-parallel 1D MARCS atmosphericmodels. Results: .Within the parameter space explored, thehigh-excitation C i lines studied are stronger in non-LTE due to thecombined effect of line source function drop and increased line opacitydue to overpopulation of the lower level for the transitions considered;the relative importance of the two effects depends on the particularcombination of T{eff}, log g, [Fe/H] and [C/Fe] and on theanalysed C i line. As a consequence, the non-LTE abundance correctionsare negative and can be substantially so, for example ˜ -0.4 dex inhalo turn-off stars at [Fe/H]˜ -3. The magnitude of the non-LTEcorrections is rather insensitive to whether inelastic H collisions areincluded or not. Conclusions: .Our results have implications onstudies of nucleosynthetic processes and on Galactic chemical evolutionmodels. When applying our calculated corrections to recent observationaldata, the upturn in [C/O] at low metallicity might still be present(thus apparently still necessitating contributions from massive Pop. IIIstars for the carbon production), but at a lower level and possibly witha rather shallow trend of ˜ -0.2 dex/dex below [O/H]˜ -1.

Permitted Oxygen Abundances and the Temperature Scale of Metal-poor Turnoff Stars
We use high-quality VLT/UVES published data of the permitted O I tripletand Fe II lines to determine oxygen and iron abundances in unevolved(dwarfs, turnoff, subgiants) metal-poor halo stars. The calculationshave been performed both in LTE and non-LTE (NLTE), employing effectivetemperatures obtained with the new infrared flux method (IRFM)temperature scale by Ramírez & Meléndez, and surfacegravities from Hipparcos parallaxes and theoretical isochrones. A newlist of accurate transition probabilities for Fe II lines, tied to theabsolute scale defined by laboratory measurements, has been used.Interstellar absorption has been carefully taken into account byemploying reddening maps, stellar energy distributions andStrömgren photometry. We find a plateau in the oxygen-to-iron ratioover more than 2 orders of magnitude in iron abundance(-3.2<[Fe/H]<-0.7), with a mean [O/Fe]=0.5 dex (σ=0.1 dex),independent of metallicity, temperature, and surface gravity. The flat[O/Fe] ratio is mainly due to the use of adequate NLTE corrections andthe new IRFM temperature scale, which, for metal-poor F/early G dwarfsis hotter than most Teff scales used in previous studies ofthe O I triplet. According to the new IRFM Teff scale, thetemperatures of turnoff halo stars strongly depend on metallicity, aresult that is in excellent qualitative and quantitative agreement withstellar evolution calculations, which predict that the Teffof the turnoff at [Fe/H]=-3 is about 600-700 K higher than that at[Fe/H]=-1. Recent determinations of Hα temperatures in turnoffstars are in excellent relative agreement with the new IRFMTeff scale in the metallicity range -2.7<[Fe/H]<-1,with a zero-point difference of only 61 K.

Galactic model parameters for field giants separated from field dwarfs by their 2MASS and V apparent magnitudes
We present a method which separates field dwarfs and field giants bytheir 2MASS and V apparent magnitudes. This method is based onspectroscopically selected standards and is hence reliable. We appliedit to stars in two fields, SA 54 and SA 82, and we estimated a full setof Galactic model parameters for giants including their total localspace density. Our results are in agreement with the ones given in therecent literature.

The lithium content of the Galactic Halo stars
Thanks to the accurate determination of the baryon density of theuniverse by the recent cosmic microwave background experiments, updatedpredictions of the standard model of Big Bang nucleosynthesis now yieldthe initial abundance of the primordial light elements withunprecedented precision. In the case of ^7Li, the CMB+SBBN value issignificantly higher than the generally reported abundances for Pop IIstars along the so-called Spite plateau. In view of the crucialimportance of this disagreement, which has cosmological, galactic andstellar implications, we decided to tackle the most critical issues ofthe problem by revisiting a large sample of literature Li data in halostars that we assembled following some strict selection criteria on thequality of the original analyses. In the first part of the paper wefocus on the systematic uncertainties affecting the determination of theLi abundances, one of our main goal being to look for the "highestobservational accuracy achievable" for one of the largest sets of Liabundances ever assembled. We explore in great detail the temperaturescale issue with a special emphasis on reddening. We derive four sets ofeffective temperatures by applying the same colour {T}_eff calibrationbut making four different assumptions about reddening and determine theLTE lithium values for each of them. We compute the NLTE corrections andapply them to the LTE lithium abundances. We then focus on our "best"(i.e. most consistent) set of temperatures in order to discuss theinferred mean Li value and dispersion in several {T}_eff and metallicityintervals. The resulting mean Li values along the plateau for [Fe/H]≤ 1.5 are A(Li)_NLTE = 2.214±0.093 and 2.224±0.075when the lowest effective temperature considered is taken equal to 5700K and 6000 K respectively. This is a factor of 2.48 to 2.81 (dependingon the adopted SBBN model and on the effective temperature range chosento delimit the plateau) lower than the CMB+SBBN determination. We findno evidence of intrinsic dispersion. Assuming the correctness of theCMB+SBBN prediction, we are then left with the conclusion that the Liabundance along the plateau is not the pristine one, but that halo starshave undergone surface depletion during their evolution. In the secondpart of the paper we further dissect our sample in search of newconstraints on Li depletion in halo stars. By means of the Hipparcosparallaxes, we derive the evolutionary status of each of our samplestars, and re-discuss our derived Li abundances. A very surprisingresult emerges for the first time from this examination. Namely, themean Li value as well as the dispersion appear to be lower (althoughfully compatible within the errors) for the dwarfs than for the turnoffand subgiant stars. For our most homogeneous dwarfs-only sample with[Fe/H] ≤ 1.5, the mean Li abundances are A(L)_NLTE = 2.177±0.071 and 2.215±0.074 when the lowest effective temperatureconsidered is taken equal to 5700 K and 6000 K respectively. This is afactor of 2.52 to 3.06 (depending on the selected range in {T}_eff forthe plateau and on the SBBN predictions we compare to) lower than theCMB+SBBN primordial value. Instead, for the post-main sequence stars thecorresponding values are 2.260±0.1 and 2.235±0.077, whichcorrespond to a depletion factor of 2.28 to 2.52. These results,together with the finding that all the stars with Li abnormalities(strong deficiency or high content) lie on or originate from the hotside of the plateau, lead us to suggest that the most massive of thehalo stars have had a slightly different Li history than their lessmassive contemporaries. In turn, this puts strong new constraints on thepossible depletion mechanisms and reinforces Li as a stellartomographer.

Sulphur abundance in Galactic stars
We investigate sulphur abundance in 74 Galactic stars by using highresolution spectra obtained at ESO VLT and NTT telescopes. For the firsttime the abundances are derived, where possible, from three opticalmultiplets: Mult. 1, 6, and 8. By combining our own measurements withdata in the literature we assemble a sample of 253 stars in themetallicity range -3.2  [Fe/H]  +0.5. Two important features,which could hardly be detected in smaller samples, are obvious from thislarge sample: 1) a sizeable scatter in [S/Fe] ratios around [Fe/H]˜-1; 2) at low metallicities we observe stars with [S/Fe]˜ 0.4, aswell as stars with higher [S/Fe] ratios. The latter do not seem to bekinematically different from the former ones. Whether the latter findingstems from a distinct population of metal-poor stars or simply from anincreased scatter in sulphur abundances remains an open question.

A Catalog of Northern Stars with Annual Proper Motions Larger than 0.15" (LSPM-NORTH Catalog)
The LSPM catalog is a comprehensive list of 61,977 stars north of theJ2000 celestial equator that have proper motions larger than 0.15"yr-1 (local-background-stars frame). The catalog has beengenerated primarily as a result of our systematic search for high propermotion stars in the Digitized Sky Surveys using our SUPERBLINK software.At brighter magnitudes, the catalog incorporates stars and data from theTycho-2 Catalogue and also, to a lesser extent, from the All-SkyCompiled Catalogue of 2.5 million stars. The LSPM catalog considerablyexpands over the old Luyten (Luyten Half-Second [LHS] and New LuytenTwo-Tenths [NLTT]) catalogs, superseding them for northern declinations.Positions are given with an accuracy of <~100 mas at the 2000.0epoch, and absolute proper motions are given with an accuracy of ~8 masyr-1. Corrections to the local-background-stars propermotions have been calculated, and absolute proper motions in theextragalactic frame are given. Whenever available, we also give opticalBT and VT magnitudes (from Tycho-2, ASCC-2.5),photographic BJ, RF, and IN magnitudes(from USNO-B1 catalog), and infrared J, H, and Ks magnitudes(from 2MASS). We also provide an estimated V magnitude and V-J color fornearly all catalog entries, useful for initial classification of thestars. The catalog is estimated to be over 99% complete at high Galacticlatitudes (|b|>15deg) and over 90% complete at lowGalactic latitudes (|b|>15deg), down to a magnitudeV=19.0, and has a limiting magnitude V=21.0. All the northern starslisted in the LHS and NLTT catalogs have been reidentified, and theirpositions, proper motions, and magnitudes reevaluated. The catalog alsolists a large number of completely new objects, which promise to expandvery significantly the census of red dwarfs, subdwarfs, and white dwarfsin the vicinity of the Sun.Based on data mining of the Digitized Sky Surveys (DSSs), developed andoperated by the Catalogs and Surveys Branch of the Space TelescopeScience Institute (STScI), Baltimore.Developed with support from the National Science Foundation (NSF), aspart of the NASA/NSF NStars program.

Metal-poor Field Blue Stragglers: More Evidence for Mass Transfer
We report radial velocity studies of five candidate metal-poor fieldblue stragglers, all known to be deficient in lithium. Four of the fivestars are single-lined spectroscopic binaries, with periods ranging from302 to 840 days, and low orbital eccentricities, in agreement withsimilar behavior found for other blue straggler candidates by Preston& Sneden and Carney et al. The limited data available for lithiumabundances indicate that all blue straggler binaries have depletedlithium, but that constant velocity stars generally have normal lithiumabundances. This suggests that the ``lithium gap'' for hot metal-poormain-sequence stars may not exist or lies at higher temperatures thanfound in the Hyades. Our results and those of Preston & Sneden showhigher values of vrotsini for the binary stars than those ofcomparable temperature constant velocity stars. The orbital periods aretoo long for tidal effects to be important, implying that spin-up duringmass transfer when the orbital separations and periods were smaller isthe cause of the enhanced rotation. The mass function distribution issteeper for the blue straggler binary stars than that of lower masssingle-lined spectroscopic binaries, indicating a narrower range insecondary masses. We argue that if all secondaries are white dwarfs withthe same mass, it is probably around 0.55 Msolar. The modelsof Rappaport et al., applied to white dwarf secondaries, suggest thatthe orbital elements of all metal-poor binary blue stragglers areconsistent with stable mass transfer, with the possible exception ofG202-65.Some of the results presented here used observations made with theMultiple Mirror Telescope, a joint facility of the SmithsonianInstitution and the University of Arizona.

SB9: The ninth catalogue of spectroscopic binary orbits
The Ninth Catalogue of Spectroscopic Binary Orbits(http://sb9.astro.ulb.ac.be) continues the series of compilations ofspectroscopic orbits carried out over the past 35 years by Batten andcollaborators. As of 2004 May 1st, the new Catalogue holds orbits for2386 systems. Some essential differences between this catalogue and itspredecessors are outlined and three straightforward applications arepresented: (1) completeness assessment: period distribution of SB1s andSB2s; (2) shortest periods across the H-R diagram; (3)period-eccentricity relation.

A CCD imaging search for wide metal-poor binaries
We explored the regions within a radius of 25 arcsec around 473 nearby,low-metallicity G- to M-type stars using (VR)I optical filters andsmall-aperture telescopes. About 10% of the sample was searched up toangular separations of 90 arcsec. We applied photometric and astrometrictechniques to detect true physical companions to the targets. The greatmajority of the sample stars was drawn from the Carney-Latham surveys;their metallicities range from roughly solar to [Fe/H] = -3.5 dex. OurI-band photometric survey detected objects that are between 0 and 5 magfainter (completeness) than the target stars; the maximum dynamicalrange of our exploration is 9 mag. We also investigated the literature,and inspected images from the Digitized Sky Surveys to complete oursearch. By combining photometric and proper motion measurements, weretrieved 29 previously known companions, and identified 13 new propermotion companions. Near-infrared 2MASS photometry is provided for thegreat majority of them. Low-resolution optical spectroscopy (386-1000nm) was obtained for eight of the new companion stars. Thesespectroscopic data confirm them as cool, late-type, metal-depleteddwarfs, with spectral classes from esdK7 to sdM3. After comparison withlow-metallicity evolutionary models, we estimate the masses of theproper motion companion stars to be in the range 0.5-0.1Mȯ. They are moving around their primary stars atprojected separations between ˜32 and ˜57 000 AU. These orbitalsizes are very similar to those of solar-metallicity stars of the samespectral types. Our results indicate that about 15% of the metal-poorstars have stellar companions in wide orbits, which is in agreement withthe binary fraction observed among main sequence G- to M-type stars andT Tauri stars.Based on observations made with the IAC80 telescope operated on theisland of Tenerife by the Instituto de Astrofísica de Canarias inthe Spanish Observatorio del Teide; also based on observations made withthe 2.2 m telescope of the German-Spanish Calar Alto Observatory(Almería, Spain), the William Herschel Telescope (WHT) operatedon the island of La Palma by the Isaac Newton Group in the SpanishObservatorio del Roque de los Muchachos (ORM) of the Instituto deAstrofísica de Canarias; and the Telescopio Nazionale Galileo(TNG) at the ORM.The complete Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/419/167

Sulphur and zinc abundances in Galactic stars and damped Lyα systems
High resolution spectra of 34 halo population dwarf and subgiant starshave been obtained with VLT/UVES and used to derive sulphur abundancesfrom the λ λ 8694.0, 8694.6 and λ λ 9212.9,9237.5 S I lines. In addition, iron abundances have been determined from19 Fe II lines and zinc abundances from the λ λ 4722.2,4810.5 lines. The abundances are based on a classical 1D, LTE modelatmosphere analysis, but effects of 3D hydrodynamical modelling on the[S/Fe], [Zn/Fe] and [S/Zn] ratios are shown to be small. We find thatmost halo stars with metallicities in the range -3.2 < [Fe/H] <-0.8 have a near-constant [S/Fe] ≃ +0.3; a least square fit to[S/Fe] vs. [Fe/H] shows a slope of only -0.04 ± 0.01. Among halostars with -1.2 < [Fe/H] < -0.8 the majority have [S/Fe] ≃+0.3, but two stars (previously shown to have low α/Fe ratios)have [S/Fe] ≃ 0.0. For disk stars with [Fe/H] > -1, [S/Fe]decreases with increasing [Fe/H] . Hence, sulphur behaves like othertypical α-capture elements, Mg, Si and Ca. Zinc, on the otherhand, traces iron over three orders of magnitude in [Fe/H], althoughthere is some evidence for a small systematic Zn overabundance ([Zn/Fe]≃ +0.1) among metal-poor disk stars and for halo stars with [Fe/H]< -2.0. Recent measurements of S and Zn in ten damped Lyαsystems (DLAs) with redshifts between 1.9 and 3.4 and zinc abundances inthe range -2.1 < [Zn/H] < -0.15 show an offset relative to the[S/Zn] - [Zn/H] relation in Galactic stars. Possible reasons for thisoffset are discussed, including low and intermittent star formationrates in DLAs.Based on observations collected at the European Southern Observatory,Chile (ESO No. 67.D-0106).Table A1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/415/993

Empirically Constrained Color-Temperature Relations. II. uvby
A new grid of theoretical color indices for the Strömgren uvbyphotometric system has been derived from MARCS model atmospheres and SSGsynthetic spectra for cool dwarf and giant stars having-3.0<=[Fe/H]<=+0.5 and 3000<=Teff<=8000 K. Atwarmer temperatures (i.e., 8000-2.0. To overcome thisproblem, the theoretical indices at intermediate and high metallicitieshave been corrected using a set of color calibrations based on fieldstars having well-determined distances from Hipparcos, accurateTeff estimates from the infrared flux method, andspectroscopic [Fe/H] values. In contrast with Paper I, star clustersplayed only a minor role in this analysis in that they provided asupplementary constraint on the color corrections for cool dwarf starswith Teff<=5500 K. They were mainly used to test thecolor-Teff relations and, encouragingly, isochrones thatemploy the transformations derived in this study are able to reproducethe observed CMDs (involving u-v, v-b, and b-y colors) for a number ofopen and globular clusters (including M67, the Hyades, and 47 Tuc)rather well. Moreover, our interpretations of such data are verysimilar, if not identical, with those given in Paper I from aconsideration of BV(RI)C observations for the sameclusters-which provides a compelling argument in support of thecolor-Teff relations that are reported in both studies. Inthe present investigation, we have also analyzed the observedStrömgren photometry for the classic Population II subdwarfs,compared our ``final'' (b-y)-Teff relationship with thosederived empirically in a number of recent studies and examined in somedetail the dependence of the m1 index on [Fe/H].Based, in part, on observations made with the Nordic Optical Telescope,operated jointly on the island of La Palma by Denmark, Finland, Iceland,Norway, and Sweden, in the Spanish Observatorio del Roque de losMuchachos of the Instituto de Astrofisica de Canarias.Based, in part, on observations obtained with the Danish 1.54 mtelescope at the European Southern Observatory, La Silla, Chile.

The evolution of the C/O ratio in metal-poor halo stars
We report new measurements of carbon and oxygen abundances in 34 F and Gdwarf and subgiant stars belonging to the halo population and spanning arange of metallicity from [Fe/H] = -0.7 to -3.2 . The survey is based onobservations of four permitted lines of C I near 9100 Å and the OI,λ 7774 triplet, all recorded at high signal-to-noise ratioswith the UVES echelle spectrograph on the ESO VLT. The line equivalentwidths were analysed with the 1D, LTE, MARCS model atmosphere code todeduce C and O abundances; corrections due to non-LTE and 3D effects arediscussed. When combined with similar published data for disk stars, ourresults confirm the metallicity dependence of the C/O ratio known fromprevious stellar and interstellar studies: C/O drops by a factor of˜3-4 as O/H decreases from solar to ˜1/10 solar. Analysed withinthe context of standard models for the chemical evolution of the solarvicinity, this drop results from the metallicity dependence of the Cyields from massive stars with mass loss, augmented by the delayedrelease of C from stars of low and intermediate mass. The former is,however, always the dominant factor. Our survey has also uncoveredtentative evidence to suggest that, as the oxygen abundance decreasesbelow [O/H] = -1, [C/O] may not remain constant at [C/O] = -0.5, aspreviously thought, but increase again, possibly approaching near-solarvalues at the lowest metallicities ([O/H] ≲ -3). With the currentdataset this is no more than a 3σ effect and it may be due tometallicity-dependent non-LTE corrections to the [C/O] ratio which havenot been taken into account. However, its potential importance as awindow on the nucleosynthesis by Population III stars is a strongincentive for future work, both observational and theoretical, to verifyits reality.Based on observations collected at the European Southern Observatory,Chile (ESO No. 67.D-0106).

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

A New Procedure for the Photometric Parallax Estimation
We present a new procedure for photometric parallax estimation. The datafor 1236 stars provide calibrations between the absolute magnitudeoffset from the Hyades main-sequence and the ultraviolet-excess foreight different (B-V)0 colour-index intervals, (0.3 0.4),(0.4 0.5), (0.5 0.6), (0.6 0.7), (0.7 0.8), (0.8 0.9), (0.9 1.0) and(1.0 1.1). The mean difference between the original and estimatedabsolute magnitudes and the corresponding standard deviation are rathersmall, +0.0002 and +/-0.0613 mag. The procedure has been adapted to theSloan photometry by means of colour equations and applied to a set ofartificial stars with different metallicities. The comparison of theabsolute magnitudes estimated by the new procedure and the canonical oneindicates that a single colour-magnitude diagram does not supplyreliable absolute magnitudes for stars with large range of metallicity.

Rapid Rotation of Ultra-Li-depleted Halo Stars and Their Association with Blue Stragglers
Observations of 18 halo main-sequence turnoff stars, four of which areextremely deficient in Li, show that three of the Li-poor ones havesubstantial line broadening. We attribute this to stellar rotation.Despite the great ages of halo stars, for G202-65, BD +51°1817, andWolf 550 we infer vsini=8.3+/-0.4, 7.6+/-0.3, and 5.5+/-0.6 kms-1, respectively. The stated errors are 3 σ. For CD-31°19466 we derive a 3 σ upper limit vsini<2.2 kms-1. The three rotating stars are known spectroscopicbinaries. We explain the high rotation velocities in terms of mass andangular momentum transfer onto the surface of the turnoff star from aninitially more massive donor. Estimates of the specific angular momentumof accreted material indicate that quite small transfer masses couldhave been involved, although the unknown subsequent spin-down of theaccretor prevents us from assigning definitive values for each star. Theaccretor is now seen as an ultra-Li-deficient star whose origin makes ita low-mass counterpart of field blue stragglers. The Li could have beendestroyed before or during the mass transfer episode. Such objects mustbe avoided in studies of the primordial Li abundance and ininvestigations into the way normal single stars process their initialLi. Based on observations obtained with the University College Londonechelle spectrograph (UCLES) on the Anglo-Australian Telescope (AAT) andwith the Utrecht echelle spectrograph (UES) on the William HerschelTelescope (WHT).

A Survey of Proper-Motion Stars. XIV. Spectroscopic Binaries among Metal-poor Field Blue Stragglers
We summarize the results from a program of monitoring the radialvelocities of 10 metal-poor, high-velocity field stars whose colors are0.01 to 0.13 mag bluer than main-sequence turnoffs ofcomparable-metallicity globular clusters. Two of the candidate halo bluestragglers (BD +72 94 and BD +40 1166) show no signs of velocityvariability, one (HD 84937) shows only weak signs of variability, one(BD +25 1981) appears to be a very long-period binary, and six (BD -122669, HD 97916, HD 106516, BD +51 1817, G66-30, and G202-65) aresingle-lined spectroscopic binaries, with periods ranging from 167 to844 days. Velocity coverage for the four candidates without orbitalsolutions ranges from 15.9 to 19.0 years. The orbital eccentricities areall low, e<0.30 and =0.11. Five of the six binary orbitshave very low eccentricities, with =0.07. We have reanalyzedthe velocity data from Preston & Sneden and have derived orbitalsolutions similar to theirs for 10 of the spectroscopic binaries amongtheir ``blue metal-poor'' stars with [Fe/H]<=-0.6. We confirm theirconclusion that the binary frequency is high; we find 47+/-10% if weinclude only the definite binaries with [Fe/H]<=-0.6. Our orbitalsolutions for the seven binaries with periods longer than 20 days allhave low eccentricities, with e<=0.26 and =0.11. Theseorbital characteristics are very similar to the Ba II, CH, subgiant CH,and dwarf carbon stars, suggesting that mass transfer has been involvedin their formation. Of the five binary stars in our program withpublished abundances of lithium, all have been found to be deficient(and one in beryllium as well). In contrast, two of the three apparentlysingle stars have published lithium abundances and show no deficiency.The mass functions for the six binaries in our program and seven similarsystems studied by Preston & Sneden are consistent with their unseencompanions all being white dwarfs with M~0.55 Msolar andrandom orbital inclinations. Taking all of our observations and those ofothers together, we argue that the results are consistent with all fieldblue stragglers being binary systems with long periods and loweccentricities, the primary stars being deficient in lithium and thesecondary stars being normal-mass white dwarfs. All these properties aresuggestive of a blue-straggler formation model that involves masstransfer. For six of the 13 stars in the two programs for whichs-process elemental abundances are available, no signs of enhancementare discernible, suggesting that the donor star was a first-ascent redgiant. For the star with the longest orbital period (1307 days), CS22956-028, s-process abundance enhancements have been reported. Thisstar may be a precursor to the subgiant CH class, as suggested by Luck& Bond. Some of the results presented here used observations madewith the Multiple Mirror Telescope, a joint facility of the SmithsonianInstitution and the University of Arizona.

On the possible existence of a self-regulating hydrodynamical process in slowly rotating stars. II. Lithium plateau in halo stars and primordial abundance
The lithium plateau observed in halo stars has long appeared as aparadox in the general context of the lithium abundance behavior instellar outer layers. First, the plateau is flat, second, the lithiumabundance dispersion is extremely small. This seems in contradictionwith the large lithium variations observed in younger stars. It is alsodifficult to understand theoretically: as lithium nuclei are destroyedby nuclear reactions at a relatively low temperature ( =~ 2.5 milliondegrees), the occurrence of macroscopic motions in the stellar outerlayers easily lead to lithium depletion at the surface. On the otherhand, if no macroscopic motions occur in the stellar gas, lithium issubject to microscopic diffusion which, in the case of halo stars,should also lead to depletion. Several ideas have been proposed toaccount for the lithium behavior in halo stars. The most promisingpossibilities were rotational-induced mixing, which could reduce lithiumin the same way for all the stars (Vauclair \cite{Vauclair88};Pinsonneault et al. \cite{Pinsonneault92} and \cite{Pinsonneault99}) andmass-loss, which could oppose the lithium settling (Vauclair &Charbonnel \cite{Vauclair95}, \cite{Vauclair98}). In both cases however,the parameters should be tightly adjusted to prevent any dispersion inthe final results. Vauclair (\cite{Vauclair99}) (Paper I) looked for aphysical process which could occur in slowly rotating stars and explainwhy the dispersion of the lithium abundances in the halo stars' plateauis so small. She pointed out that the displaystyle mu -gradient termswhich appear in the computations of the meridional circulation velocity(e.g. Mestel \cite{Mestel53}) were not introduced in previouscomputations of rotationally-induced mixing. This can lead to aself-regulating process which reduces the efficiency of the meridionalcirculation as well as the microscopic diffusion. Here we presentnumerical computations of this process and its influence on the lithiumabundance variations in halo stars. We show that in slowly rotatingstars, under some conditions, lithium can be depleted by a factor of upto two with a dispersion smaller than 0.1 dex in the middle part of thelithium plateau. We derive a primordial lithium abundance of 2.5+/- 0.1,consistent with the recent determinations of D/H and 4He/H.

Catalogue of [Fe/H] determinations for FGK stars: 2001 edition
The catalogue presented here is a compilation of published atmosphericparameters (Teff, log g, [Fe/H]) obtained from highresolution, high signal-to-noise spectroscopic observations. This newedition has changed compared to the five previous versions. It is nowrestricted to intermediate and low mass stars (F, G and K stars). Itcontains 6354 determinations of (Teff, log g, [Fe/H]) for3356 stars, including 909 stars in 79 stellar systems. The literature iscomplete between January 1980 and December 2000 and includes 378references. The catalogue is made up of two tables, one for field starsand one for stars in galactic associations, open and globular clustersand external galaxies. The catalogue is distributed through the CDSdatabase. Access to the catalogue with cross-identification to othersets of data is also possible with VizieR (Ochsenbein et al.\cite{och00}). The catalogue (Tables 1 and 2) is only available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/373/159 and VizieRhttp://vizier.u-strasbg.fr/.

Abundances and Evolution of Lithium in the Galactic Halo and Disk
We have measured the Li abundance of 18 stars with -2<~[Fe/H]<~-1and 6000<~Teff<~6400 K, a parameter range that waspoorly represented in previous studies. We examine the Galactic chemicalevolution (GCE) of this element, combining these data with previoussamples of turnoff stars over the full range of halo metallicities. Wefind that A(Li) increases from a level of ~2.10 at [Fe/H]=-3.5 to ~2.40at [Fe/H]=-1.0, where A(Li)=log10(n(Li)/n(H))+12.00. We comparethe observations with several GCE calculations, including existingone-zone models and a new model developed in the framework ofinhomogeneous evolution of the Galactic halo. We show that Li evolved ata constant rate relative to iron throughout the halo and old disk epochsbut that during the formation of young disk stars, the production of Lirelative to iron increased significantly. These observations can beunderstood in the context of models in which postprimordial Li evolutionduring the halo and old disk epochs is dominated by Galactic cosmic-rayfusion and spallation reactions, with some contribution from theν-process in supernovae. The onset of more efficient Li production(relative to iron) in the young disk coincides with the appearance of Lifrom novae and asymptotic giant branch (AGB) stars. The major challengefacing the models is to reconcile the mild evolution of Li during thehalo and old disk phases with the more efficient production (relative toiron) at [Fe/H]>-0.5. We speculate that cool-bottom processing(production) of Li in low-mass stars may provide an importantlate-appearing source of Li, without attendant Fe production, that mightexplain the Li production in the young disk. Based on observationsobtained with the University College London échelle spectrograph(UCLES) on the Anglo-Australian Telescope (AAT) and the Utrechtéchelle spectrograph (UES) on the William Herschel Telescope(WHT).

Ultra-Lithium-deficient Halo Stars and Blue Stragglers: A Common Origin?
We present data for four ultra-Li-deficient, warm, halo stars. The Lideficiency of two of these is a new discovery. Three of the four starshave effective temperatures Teff~6300 K, in contrast topreviously known Li-deficient halo stars, which spanned the temperaturerange of the Spite plateau. In this paper we propose that these andpreviously known ultra-Li-deficient halo stars may have had theirsurface lithium abundances reduced by the same mechanism as produceshalo field blue stragglers. Even though these stars have yet to revealthemselves as blue stragglers, they might be regarded as``blue-stragglers-to-be.'' In our proposed scenario, the surfaceabundance of Li in these stars could be destroyed (1) during the normalpre-main-sequence single-star evolution of their low-mass precursors,(2) during the post-main-sequence evolution of an evolved mass donor,and/or (3) via mixing during a mass-transfer event or stellar merger.The warmest Li-deficient stars at the turnoff would be regarded asemerging ``canonical'' blue stragglers, whereas cooler ones representsub-turnoff-mass blue-stragglers-to-be. The latter are presently hiddenon the main sequence, Li depletion being possibly the clearest signatureof their past history and future significance. Eventually, themain-sequence turnoff will reach down to their mass, exposing thoseLi-depleted stars as canonical blue stragglers when normal stars of thatmass evolve away. Arguing against this unified view is the observationthat the three Li-depleted stars at Teff~=6300 K are allbinaries, whereas very few of the cooler systems show evidence forbinarity; it is thus possible that two separate mechanisms areresponsible for the production of Li-deficient main-sequence halo stars.Based on observations obtained with the University College Londonéchelle spectrograph (UCLES) on the Anglo-Australian Telescope(AAT) and the Utrecht échelle spectrograph (UES) on the WilliamHerschel Telescope (WHT).

Estimation of Stellar Metal Abundance. II. A Recalibration of the Ca II K Technique, and the Autocorrelation Function Method
We have recalibrated a method for the estimation of stellar metalabundance, parameterized as [Fe/H], based on medium-resolution (1-2Å) optical spectra (the majority of which cover the wavelengthrange 3700-4500 Å). The equivalent width of the Ca II K line (3933Å) as a function of [Fe/H] and broadband B-V color, as predictedfrom spectrum synthesis and model atmosphere calculations, is comparedwith observations of 551 stars with high-resolution abundances availablefrom the literature (a sevenfold increase in the number of calibrationstars that were previously available). A second method, based on theFourier autocorrelation function technique first described by Ratnatunga& Freeman, is used to provide an independent estimate of [Fe/H], ascalibrated by comparison with 405 standard-star abundances.Metallicities based on a combination of the two techniques for dwarfsand giants in the color range 0.30<=(B-V)_0<=1.2 exhibit anexternal 1 sigma scatter of approximately 0.10-0.20 dex over theabundance range -4.0<=[Fe/H]<=0.5. Particular attention has beengiven to the determination of abundance estimates at the metal-rich endof the calibration, where our previous attempt suffered from aconsiderable zero-point offset. Radial velocities, accurate toapproximately 10 km s^-1, are reported for all 551 calibration stars.

Extremely Metal Poor Stars. VI. The Heterogeneous Class of Lithium-depleted Main-Sequence Turnoff Dwarfs
We present abundances of 14 elements in the metal-poor main-sequenceturnoff star G122-69 , which has at most one-tenth the Li abundanceobserved in most other stars of similar temperature and metallicity. Thedeficiency of Li is significant because of this element's role inconstraining primordial fnucleosynthesis and the baryon density of theuniverse. Although we have examined elements of intermediate atomicmass, in the iron peak, and heavy neutron capture species, we find noother abundance anomalies in G122-69. Nor do we find any evidence ofradial velocity variation at the 1 km s^-1 level. These data arecombined with our previous study of the three other known Li-deficientmain-sequence turnoff stars, thus permitting an analysis of the fullsample. The new data reinforce our earlier finding that there is noobvious common abundance abnormality that one might associate with theLi deficiency. Indeed, the four stars exhibit diverse abundance patternsand form a heterogeneous group. That said, the other three members ofthe group appear to have higher values of [Ba/Sr], but not necessarilyof [Ba/Fe] or [Sr/Fe], than most ``normal'' halo or even metal-deficientbarium stars. The higher than average [Ba/Sr] ratios may indicate thattheir envelope material underwent s-processing with a high neutronexposure near the limit of that identified in the metal-deficient bariumstars and Population I analogs, which are thought to originate throughcontamination by asymptotic giant branch star ejecta. However, we cannotfavor such an explanation any more than a normal r-process origin,especially in view of the unremarkable [Sr/Fe] and [Ba/Fe] values(except perhaps in G186-26). The most we can say is that the [Ba/Sr]ratios in three of these stars are at the high end of the rangeencountered for ``normal'' halo stars, but that no mechanism has beenunambiguously identified as responsible for their Li-depletion.

A catalogue of [Fe/H] determinations: 1996 edition
A fifth Edition of the Catalogue of [Fe/H] determinations is presentedherewith. It contains 5946 determinations for 3247 stars, including 751stars in 84 associations, clusters or galaxies. The literature iscomplete up to December 1995. The 700 bibliographical referencescorrespond to [Fe/H] determinations obtained from high resolutionspectroscopic observations and detailed analyses, most of them carriedout with the help of model-atmospheres. The Catalogue is made up ofthree formatted files: File 1: field stars, File 2: stars in galacticassociations and clusters, and stars in SMC, LMC, M33, File 3: numberedlist of bibliographical references The three files are only available inelectronic form at the Centre de Donnees Stellaires in Strasbourg, viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5), or viahttp://cdsweb.u-strasbg.fr/Abstract.html

The empirical scale of temperatures of the low main sequence (F0V-K5V).
We have calibrated the effective temperatures of the low main sequencestars ranging spectral types from F0 to K5 versus [Fe/H] and colours(B-V), (R-I), (V-R), (V-I), (V-K), (J-H), (J-K) and ubvy-β, using alarge sample of dwarfs and subdwarfs. The effective temperatures, scaledto direct T_eff_ determinations via reliable angular diametermeasurements, were derived applying the InfraRed Flux Method with thenew grid of atmosphere models developed by Kurucz (1993). We have fittedpolynomial functions of the form θ_eff_=P(colour,[Fe/H]) usingthe least squares method. The precision of the fits ranges from 30K for(V-K) to 154K for (J-H). The new relations have been compared toprevious calibrations. We also provide the empirical intrinsic colours(U-B), (B-V), (R-I), (V-R), (V-I), (V-K), (J-H), (J-K) and β, inthe ranges: 4000K[Fe/H]>-2.5.

Enviar un nou article


Enllaços Relacionats

  • - No s'ha trobat enllaços -
Enviar un nou enllaç


Membre dels grups següents:


Dades d'Observació i Astrometria

Constel·lació:Virgo
Ascensió Recta:14h50m07.80s
Declinació:+00°50'27.2"
Magnitud Aparent:10.983
Moviment propi RA:-291
Moviment propi Dec:-101.6
B-T magnitude:11.29
V-T magnitude:11.009

Catàlegs i designacions:
Noms Propis
TYCHO-2 2000TYC 327-786-1
USNO-A2.0USNO-A2 0900-07806906
HIPHIP 72561

→ Sol·licitar més catàlegs i designacions de VizieR