Inici     Començant     Noves Imatges     Imatge del Dia     Blog New!     Login  

HD 122149


Contingut

Imatges

Carregar la teva Imatge

DSS Images   Other Images


Articles Relacionats

The Geneva-Copenhagen survey of the solar neighbourhood. III. Improved distances, ages, and kinematics
Context: Ages, chemical compositions, velocity vectors, and Galacticorbits for stars in the solar neighbourhood are fundamental test datafor models of Galactic evolution. The Geneva-Copenhagen Survey of theSolar Neighbourhood (Nordström et al. 2004; GCS), amagnitude-complete, kinematically unbiased sample of 16 682 nearby F andG dwarfs, is the largest available sample with complete data for starswith ages spanning that of the disk. Aims: We aim to improve theaccuracy of the GCS data by implementing the recent revision of theHipparcos parallaxes. Methods: The new parallaxes yield improvedastrometric distances for 12 506 stars in the GCS. We also use theparallaxes to verify the distance calibration for uvby? photometryby Holmberg et al. (2007, A&A, 475, 519; GCS II). We add newselection criteria to exclude evolved cool stars giving unreliableresults and derive distances for 3580 stars with large parallax errorsor not observed by Hipparcos. We also check the GCS II scales of T_effand [Fe/H] and find no need for change. Results: Introducing thenew distances, we recompute MV for 16 086 stars, and U, V, W,and Galactic orbital parameters for the 13 520 stars that also haveradial-velocity measurements. We also recompute stellar ages from thePadova stellar evolution models used in GCS I-II, using the new valuesof M_V, and compare them with ages from the Yale-Yonsei andVictoria-Regina models. Finally, we compare the observed age-velocityrelation in W with three simulated disk heating scenarios to show thepotential of the data. Conclusions: With these revisions, thebasic data for the GCS stars should now be as reliable as is possiblewith existing techniques. Further improvement must await consolidationof the T_eff scale from angular diameters and fluxes, and the Gaiatrigonometric parallaxes. We discuss the conditions for improvingcomputed stellar ages from new input data, and for distinguishingdifferent disk heating scenarios from data sets of the size andprecision of the GCS.Full Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/501/941

Abundance Pattern of Metal-Rich Stars from 14 Old and 24 Young Stars
The metallicities and abundance ratios, [X/Fe], of 12 elements—C,Na, Mg, Si, S, Ca, Ti, Cr, Ni, Y, Zr, and Ce—are determined for 14old and 24 young metal-rich stars based on high resolution, high S/Nspectra obtained with the HIDES spectrograph attached to the 1.88 mtelescope of Okayama Astrophysical Observatory (Okayama, Japan). Theresults show that there is no any significant difference in the [X/Fe]versus [Fe/H] trend for these elements between the two groups of stars.This is consistent with the kinematics of the two groups of stars beingsimilar to that of the thin disk. In connection with the abundanceanalysis, we found that iron abundances from Fe II lines are generallyhigher than those from Fe I lines for cool metal-rich stars. Inparticular, the [S/Fe] ratio strongly depends on stellar temperature. Inview of this, the chemical evolution of the element sulfur can only betraced by selecting solar-type stars within a critically narrowtemperature range. Inspecting a large sample of metal-rich stars, wefound that young metal-rich stars generally have kinematics similar tothat of the local thin disk, while old metal-rich stars show twodifferent kinematic distributions, one with V LSR ~-10kms-1 and the other with V LSR ~-50kms-1. Abundances of this new population of old metal-richstars with a slight lag in the Galactic rotation have already beeninvestigated by the present authors. We compared the abundance patternsfor the three groups of metal-rich stars, and did not find anysignificant difference in abundance ratios for the elementsinvestigated. These results indicate an inhomogeneous metallicityenhancement but similar nucleosynthesis history for the Galacticevolution of the thin disk from the beginning to the present.

The N2K Consortium. VII. Atmospheric Parameters of 1907 Metal-rich Stars: Finding Planet-Search Targets
We report high-precision atmospheric parameters for 1907 stars in theN2K low-resolution spectroscopic survey, designed to identify metal-richFGK dwarfs likely to harbor detectable planets. Of these stars, 284 arein the ideal temperature range for planet searches,Teff<=6000 K, and have a 10% or greater probability ofhosting planets based on their metallicities. The stars in thelow-resolution spectroscopic survey should eventually yield >60 newplanets, including 8-9 hot Jupiters. Short-period planets have alreadybeen discovered orbiting the survey targets HIP 14810 and HD 149143.

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

UBV photometry of stars whose positions are accurately known. II
The present report on the UBV observations of stars with favorableastrometric history gives attention to stars of the BD zones lyingbetween 50 and 54 deg. These observations and their reductions wereperformed from August 1983 to August 1984, as described by Oja (1984).Results are presented as tables for both the standard stars and theprogram stars. Comparisons are conducted between the present Vmagnitudes and those of the NPZT (1982) and AGK3R (1978) catalogs.

Radial Velocities, Spectral Types, and Luminosity Classes of 820 Stars.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1950ApJ...112...48M&db_key=AST

Enviar un nou article


Enllaços Relacionats

  • - No s'ha trobat enllaços -
Enviar un nou enllaç


Membre dels grups següents:


Dades d'Observació i Astrometria

Constel·lació:Ursa Major
Ascensió Recta:13h58m35.74s
Declinació:+53°34'45.0"
Magnitud Aparent:7.923
Distancia:115.34 parsecs
Moviment propi RA:-47.6
Moviment propi Dec:-6.5
B-T magnitude:8.665
V-T magnitude:7.985

Catàlegs i designacions:
Noms Propis
HD 1989HD 122149
TYCHO-2 2000TYC 3852-486-1
USNO-A2.0USNO-A2 1425-08046461
HIPHIP 68271

→ Sol·licitar més catàlegs i designacions de VizieR